• Journal of Inorganic Materials
  • Vol. 38, Issue 1, 32 (2023)
Yao LIU1、2, Xunhai YOU1、3, Bing ZHAO1、3, Xiaoying LUO4、*, and Xing CHEN1、2、3、*
Author Affiliations
  • 11. Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
  • 22. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
  • 33. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
  • 44. State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200032, China
  • show less
    DOI: 10.15541/jim20220384 Cite this Article
    Yao LIU, Xunhai YOU, Bing ZHAO, Xiaoying LUO, Xing CHEN. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review[J]. Journal of Inorganic Materials, 2023, 38(1): 32 Copy Citation Text show less
    References

    [1] D K W CHU, Y PAN, S M S CHENG et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry, 549(2020).

    [2] Y OROOJI, H SOHRABI, N HEMMAT et al. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 18(2020).

    [3] R SAMSON, G R NAVALE, M S DHARNE et al. Biosensors: frontiers in rapid detection of COVID-19. Biotech, 385(2020).

    [4] M ALAFEEF, K DIGHE, P MOITRA et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 17028(2020).

    [5] F HAGHAYEGH, R SALAHANDISH, M HASSANI et al. Highly stable buffer-based zinc oxide/reduced graphene oxide nanosurface chemistry for rapid immunosensing of SARS-CoV-2 antigens. ACS Appl. Mater. Interfaces, 10844(2022).

    [6] H ZHAO, F LIU, W XIE et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors and Actuators B Chemical, 128899(2021).

    [7] A R FALSEY, E E WALSH. Novel coronavirus and severe acute respiratory syndrome. Lancet, 1312(2003).

    [8] A M ZAKI, S VANBOHEEMEN, T M BESTEBROER et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 367:, 1814(2012).

    [9] N ZHU, D ZHANG, W WANG et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 727(2020).

    [10] H YAO, Y SONG, Y CHEN et al. Molecular architecture of the SARS-CoV-2 virus. Cell, 730(2020).

    [11] N CHOUDHRY, X ZHAO, D XU et al. Chinese therapeutic strategy for fighting COVID-19 and potential small-molecule inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Journal of Medicinal Chemistry, 13205(2020).

    [12] M THOMS, R BUSCHAUER, M AMEISMEIER et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 1249(2020).

    [13] W FENG, A M NEWBIGGING, C LE et al. Molecular diagnosis of COVID-19: challenges and research needs. Analytical Chemistry, 10196(2020).

    [14] C B XIE, L X JIANG, G HUANG et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases, 264(2020).

    [15] D SADIGHBAYAN, M HASANZADEH, E GHAFAR-ZADEH. Biosensing based on field-effect transistors (FET): recent progress and challenges. Trac-Trends in Analytical Chemistry, 116067(2020).

    [16] W LIU, L LIU, G KOU et al. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology, e0461(2020).

    [17] Y PENG, C LIN, Y LI et al. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter, 694(2022).

    [18] J SITJAR, J D LIAO, H LEE et al. Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants. Biosensors & Bioelectronics, 113153(2021).

    [19] Y YANG, Y PENG, C LIN et al. Human ACE2-functionalized gold "virus-trap" nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Letters, 109(2021).

    [20] T CHAIBUN, J PUENPA, T NGAMDEE et al. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications, 802(2021).

    [21] J KUDR, P MICHALEK, L ILIEVA et al. COVID-19: a challenge for electrochemical biosensors. TrAC Trends in Analytical Chemistry, 116192(2021).

    [22] V V TRAN, N H T TRAN, H S HWANG et al. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosensors & Bioelectronics, 113192(2021).

    [23] S A EJAZI, S GHOSH, N ALI. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunology and Cell Biology, 21(2020).

    [24] D MATHEW, J R GILES, A E BAXTER et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 8511(2020).

    [25] D ONG, P C FRAGKOU, V A SCHWEITZER et al. How to interpret and use COVID-19 serology and immunology tests. Clinical Microbiology and Infection, 981(2021).

    [26] D W KIMMEL, G LEBLANC, M E MESCHIEVITZ et al. Electrochemical sensors and biosensors. Analytical Chemistry, 685(2012).

    [27] J E FREW, H A HILL. Electrochemical biosensors. Analytical Chemistry, 1747(2010).

    [28] G BALKOURANI, A BROUZGOU, M ARCHONTI et al. Emerging materials for the electrochemical detection of COVID-19. Journal of Electroanalytical Chemistry, 115285(2021).

    [29] R ANTIOCHIA. Developments in biosensors for CoV detection and future trends. Biosensors and Bioelectronics, 112777(2020).

    [30] P E ERDEN, E KILIÇ. A review of enzymatic uric acid biosensors based onamperometric detection. Talanta, 312(2013).

    [31] C M A BRETT, B A M OLIVEIRA. Electrochemical sensing in solution-origins, applications and future perspectives. Journal of Solid State Electrochemistry, 1487(2011).

    [32] U GUTH, W VONAU, J ZOSEL. Recent developments in electrochemical sensor application and technology-a review. Measurement Science and Technology, 042002(2009).

    [33] H KARIMI-MALEH, Y OROOJI, F KARIMI et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosensors & Bioelectronics, 113252(2021).

    [34] K CHAROENKITAMORN, PT TUE, M CHIKAE et al. Gold nanoparticle-labeled electrochemical immunoassay using open circuit potential for human chorionic gonadotropin detection. Electroanalysis, 1766(2018).

    [35] M Z RASHED, J A KOPECHEK, M C PRIDDY et al. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance- based detector. Biosensors & Bioelectronics, 112709(2021).

    [36] P LASSERRE, B BALANSETHUPATHY, V J VEZZA et al. SARS-CoV-2 aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. Analytical Chemistry, 2126(2022).

    [37] H XU, J ZHENG, H LIANG et al. Electrochemical sensor for cancer cell detection using calix 8 arene/polydopamine/phosphorene nanocomposite based on host-guest recognition. Sensors and Actuators B-Chemical, 128193(2020).

    [38] G SEO, G LEE, J K MI et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 5135(2020).

    [39] A MOKHTARZADEH, R EIVAZZADEH-KEIHAN, P PASHAZADEH et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry, 445(2017).

    [40] F YUAN, Y XIA, Q LU et al. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 123419(2022).

    [41] C ZHONG, B YANG, X JIANG et al. Current progress of nanomaterials in molecularly imprinted electrochemical sensing. Critical Reviews in Analytical Chemistry, 15(2018).

    [42] H K CHOI, M J LEE, N L SANG et al. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Frontiers in Chemistry, 672739(2021).

    [43] B REZAEI, MK BOROUJENI, A A ENSAFI. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics, 490(2015).

    [44] T XIAO, J HUANG, D WANG et al. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta, 120210(2020).

    [45] H JANS, Q HUO. Gold nanoparticle-enabled biological and chemical detection and analysis. Chemical Society Reviews, 2849(2012).

    [46] S TRIPATHY, S G SINGH. Label-free electrochemical detection of DNA hybridization: a method for COVID-19 diagnosis. Transactions of the Indian National Academy of Engineering, 205(2020).

    [47] L KASHEFI-KHEYRABADI, H V NGUYEN, A GO et al. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosensors & Bioelectronics, 113649(2021).

    [48] A L LORENZEN, SANTOS A M DOS, SANTOS L P DOS et al. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochimica Acta, 139757(2022).

    [49] B S VADLAMANI, T UPPAL, S C VERMA et al. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors, 5871(2020).

    [50] F ARDUINI, S CINTI, V MAZZARACCHIO et al. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosensors and Bioelectronics, 112033(2020).

    [51] S EISSA, M ZOUROB. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Analytical Chemistry, 1826.

    [52] R TORRENTE-RODRÍGUEZ, H LUKAS, J TU et al. SARS-CoV-2 rapidplex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 3:, 1981(2020).

    [53] L LIV, G OBAN, N NAKIBOLU et al. A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples. Biosensors & Bioelectronics, 113497(2021).

    [54] S A HASHEMI, N BEHBAHAN, S BAHRANI et al. Ultra-sensitive viral glycoprotein detection nanosystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosensors & Bioelectronics, 112731(2021).

    [55] MA ALI, C HU, S JAHAN et al. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Advanced Materials, 2006(2021).

    [56] S WITT, A ROGIEN, D WERNER et al. Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein. Diamond and Related Materials, 108542(2021).

    [57] M MEHMANDOUST, Z P GUMUS, M SOYLAK et al. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample. Talanta, 123211(2022).

    [58] J TIAN, Z LIANG, O HU et al. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta, 138533(2021).

    [59] A YAKOH, U PIMPITAK, S RENGPIPAT et al. Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosensors & Bioelectronics, 112912(2020).

    [60] A RAZIQ, A KIDAKOVA, R BOROZNJAK et al. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosensors & Bioelectronics, 113029(2021).

    [61] R TORRENTE, H LUKAS, J Tu et al. SARS-CoV-2 rapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 3:, 1981(2020).

    Yao LIU, Xunhai YOU, Bing ZHAO, Xiaoying LUO, Xing CHEN. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review[J]. Journal of Inorganic Materials, 2023, 38(1): 32
    Download Citation