• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0700003 (2021)
Yu Qi*, Hengyu Yi, Jijin Huang, and Yan Kuang
Author Affiliations
  • Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang , Sichuan 621900, China
  • show less
    DOI: 10.3788/LOP202158.0700003 Cite this Article Set citation alerts
    Yu Qi, Hengyu Yi, Jijin Huang, Yan Kuang. Research Development and Technological Challenge of Alkali Lasers with High Power[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700003 Copy Citation Text show less
    References

    [1] Barton D K, Falcone R, Kleppner D et al. Report of the american physical society study group on boost-phase intercept systems for national missile defense: scientific and technical issues[J]. Reviews of Modern Physics, 76, S425(2004).

    [2] Qi Y. Live round interception test analysis of airborne laser[J]. High Energy Laser Research & Development, 34, 1-3(2010).

    [3] Ren G G, Yi W W, Qi Y et al. U.S. theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 54, 100002(2017).

    [4] Krupke W F, Beach R J, Kanz V K et al. Diode pumpable rubidium laser[C]. Advanced Solid-State Photonics, San Antonio, Texas, 121(2003).

    [5] Jacobs S, Gould G, Rabinowitz P. Coherent light amplification in optically pumped Cs vapor[J]. Physical Review Letters, 7, 415-417(1961).

    [6] Sharma A, Bhaskar N D, Lu Y Q et al. Continuous-wave mirrorless lasing in optically pumped atomic Cs and Rb vapors[J]. Applied Physics Letters, 39, 209-211(1981).

    [7] Movsesyan M E, Shmavonyan S V. The effect of collisions on stimulated electron Raman scattering processes and parametric scattering of light in rubidium vapors[J]. Optics Spectroscopy, 63, 305-307(1987).

    [8] Beach R J, Krupke W F, Keith Kanz V et al. End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling[J]. Journal of the Optical Society of America B, 21, 2151-2163(2004).

    [9] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 260, 696-698(2006).

    [10] Zhdanov B, Knize R J. Diode-pumped 10 W continuous wave cesium laser[J]. Optics Letters, 32, 2167-2169(2007).

    [11] Zhdanov B V, Sell J, Knize R J. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electronics Letters, 44, 582-583(2008).

    [12] Zhdanov B V, Knize R J. Alkali lasers development at laser and optics research center of the US air force academy[J]. Proceedings of SPIE, 7005, 700524(2008).

    [13] Zhdanov B V, Shaffer M K, Knize R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers[J]. Optics Express, 17, 14767-14770(2009).

    [14] Endo M, Wani F. DPAL activities in Japan[J]. Proceedings of SPIE, 9255, 92551S(2015).

    [15] Krupke W F. Diode pumped alkali lasers(DPALs): an overview[J]. Proceedings of SPIE, 7005, 700521(2008).

    [16] Zweiback J, Krupke W F. 28 W average power hydrocarbon-free rubidium diode pumped alkali laser[J]. Optics Express, 18, 1444-1449(2010).

    [17] Bogachev A V, Garanin S G, Dudov A M et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 42, 95-98(2012).

    [18] Zhdanov B V, Shaffer M K, Knize R J. Scaling of diode-pumped Cs laser: transverse pump, unstable cavity, MOPA[J]. Proceedings of SPIE, 7581, 75810F(2010).

    [19] Zameroski N D, Hager G D, Rudolph W et al. Experimental and numerical modeling studies of a pulsed rubidium optically pumped alkali metal vapor laser[J]. Journal of the Optical Society of America B, 28, 1088-1099(2011).

    [20] Krupke W F. Diode pumped alkali lasers (DPALs): a review[J]. Progress in Quantum Electronics, 36, 4-28(2012).

    [21] Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[J]. Proceedings of SPIE, 8241, 82410Q(2012).

    [22] Barmashenko B D, Rosenwaks S, Heaven M C. Static diode pumped alkali lasers: model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions[J]. Optics Communications, 292, 123-125(2013).

    [23] Zhdanov B V, Knize R J. Review of alkali laser research and development[J]. Optical Engineering, 52, 021010(2013).

    [24] Quarrie L O. The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs)[J]. Optical Materials, 35, 843-851(2013).

    [25] Koenning T, Irwin D, Stapleton D et al. Narrow line diode laser stacks for DPAL pumping[J]. Proceedings of SPIE, 8962, 8962F(2014).

    [26] Zhdanov B V, Knize R J. DPAL: historical perspective and summary of achievements[J]. Proceedings of SPIE, 8898, 88980V(2013).

    [27] Rosenwaks S, Yacoby E, Waichman K et al. Supersonic diode pumped alkali lasers: computational fluid dynamics modeling[J]. Proceedings of SPIE, 9650, 96500A(2015).

    [28] Pitz G A, Stalnaker D M, Guild E M et al. Advancements in flowing diode pumped alkali lasers[J]. Proceedings of SPIE, 9729, 972902(2016).

    [29] Hersman F W, Distelbrink J H, Ketel J et al. Power scaling of a wavelength-narrowed diode laser system for pumping alkali vapors[J]. Proceedings of SPIE, 9729, 972905(2016).

    [30] Koenning T, McCormick D, Irwin D et al. DPAL pump system exceeding 3 kW at 766 nm and 30 GHz bandwidth[J]. Proceedings of SPIE, 9733, 97330E(2016).

    [31] Zhdanov B V, Rotondaro M, Shaffer M et al. Lasing degradation effects in diode-pumped alkali lasers[J]. Proceedings of SPIE, 10798, 1079807(2018).

    [32] Endo M, Nagaoka R, Nagaoka H et al. Output power characteristics of diode-pumped cesium vapor laser[J]. Japanese Journal of Applied Physics, 54, 122701(2015).

    [33] Endo M, Nagaoka R, Nagaoka H et al. Scalable pump beam arrangement for diode pumped alkali lasers[J]. Proceedings of SPIE, 10513, 105130K(2018).

    [34] Wani F. High power laser activities at Kawasaki Heavy Industries, Ltd[J]. Proceedings of SPIE, 11042, 1104203(2019).

    [35] Krupke W F, Beach R J, Kanz V K et al. DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers[J]. Proceedings of SPIE, 5334, 156-167(2004).

    [36] Bliznyuk V V, Galstyan K P, Grigoriev V S et al. Analyzing the spectral characteristics of laser diodes to optimize their pumping[J]. Bulletin of the Russian Academy of Sciences: Physics, 84, 27-29(2020).

    [37] Wallerstein A J, Perram G P, Rice C A. Excitation of higher lying states in a potassium diode-pumped alkali laser[J]. Applied Physics B, 125, 1-18(2019).

    [38] Yu J H, Zhu Q, Xie W et al. High-power laser diode-pumped alkali metal vapor laser[J]. Laser & Optoelectronics Progress, 43, 46-51(2006).

    [39] Yang Z N, Wang H Y, Lu Q S et al. Research development of laser diode pumped alkali lasers[J]. Laser & Optoelectronics Progress, 47, 051405(2010).

    [40] Yang Z N, Wang H Y, Lu Q S et al. Theoretical model and novel numerical approach of a broadband optically pumped three-level alkali vapour laser[J]. Molecular and Optical Physics, 44, 085401(2011).

    [41] Yang Z N, Wang H Y, Lu Q S et al. Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium[J]. Journal of the Optical Society of America B, 28, 1353-1364(2011).

    [42] Li Z Y, Han G C, Tan R Q et al. Self-heated diode-pumped alkali laser with a microfabricated alkali cell[J]. Optical Engineering, 56, 106105(2017).

    [43] Tan Y N, Li Y M, Gong F Q et al. 420 nm alkali blue laser based on two-photon absorption[J]. Chinese Journal of Lasers, 40, 1002011(2013).

    [44] Cao R, Gai B D, Yang J et al. Efficient generation of collimated frequency upconversion blue light in rubidium vapor[J]. Chinese Optics Letters, 13, 121903(2015).

    [45] Yu H H, Chen F, Li Y B et al. Research progress on the two-photon absorption alkali vapor laser[J]. Chinese Optics, 12, 38-47(2019).

    [46] Li Z Y, Tan R Q, Huang W et al. Diode pumped cesium vapor laser[J]. High Power Laser and Particle Beams, 26, 9-10(2014).

    [47] Ning F J, Tan R Q, Liu S Y et al. Diode pumped potassium vapor laser[J]. Chinese Journal of Lasers, 46, 0215001(2019).

    [48] Wang S Y, Han J H, An G F et al. Demonstration of a dual-wavelength alkali laser with a mixed rubidium-cesium vapor cell[J]. Optics Communications, 458, 124728(2020).

    [49] Yi H Y, Qi Y, Huang J J. Development of ship-based laser weapons system[J]. Laser Technology, 39, 834-839(2015).

    [50] Wallerstein A J, Perram G, Rice C A. Excitation of higher lying energy states in a rubidium DPAL[J]. Proceedings of SPIE, 10511, 105112J(2018).

    [51] Tian J Y, Zhang J, Peng H Y et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 40, 1123-1129(2019).

    [52] Jiang Z G, Wang Y, Han J H et al. Effects of linewidth of seed-laser on output features of end-pumped alkali vapor amplifier[J]. Chinese Journal of Lasers, 43, 0502004(2016).

    [53] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).

    [54] Markosyan A H, Kushner M J. Plasma formation in diode pumped alkali lasers sustained in Cs[J]. Journal of Applied Physics, 120, 193105(2016).

    [55] Zhdanov B V, Rotondaro M D, Shaffer M K et al. New results for temperature rise in gain medium of operating DPAL causing its degradation[J]. Proceedings of SPIE, 10436, 104360B(2017).

    [56] Wang Z H, Zhang J F, Zeng Z Q et al. Hyperfine energy level splitting structure measurement of the excited state 6D5/2 for cesium atom[J]. Laser & Optoelectronics Progress, 57, 030202(2020).

    [57] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    Yu Qi, Hengyu Yi, Jijin Huang, Yan Kuang. Research Development and Technological Challenge of Alkali Lasers with High Power[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700003
    Download Citation