• Advanced Photonics
  • Vol. 4, Issue 3, 034001 (2022)
Milad Gholipour Vazimali1 and Sasan Fathpour1、2、*
Author Affiliations
  • 1University of Central Florida, CREOL, College of Optics and Photonics, Orlando, Florida, United States
  • 2University of Central Florida, Department of Electrical and Computer Engineering, Orlando, Florida, United States
  • show less
    DOI: 10.1117/1.AP.4.3.034001 Cite this Article Set citation alerts
    Milad Gholipour Vazimali, Sasan Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4(3): 034001 Copy Citation Text show less
    References

    [1] N. Uesugi, T. Kimura. Efficient second-harmonic generation in three-dimensional LiNbO3 optical waveguide. Appl. Phys. Lett., 29, 572-574(1976). https://doi.org/10.1063/1.89191

    [2] R. Schmidt, I. Kaminow. Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett., 25, 458-460(1974). https://doi.org/10.1063/1.1655547

    [3] J. L. Jackel, C. Rice, J. Veselka. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett., 41, 607-608(1982). https://doi.org/10.1063/1.93615

    [4] P. Rabiei et al. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).

    [5]

    [6]

    [7]

    [8] Y. Kong et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [9] Y. Xu et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express, 29, 5497-5504(2021).

    [10] A. L. Kozub et al. Polaronic enhancement of second-harmonic generation in lithium niobate. Phys. Rev. B, 104, 174110(2021).

    [11] M. Boukhtouta et al. Predictions on structural, electronic, optical and thermal properties of lithium niobate via first-principle computations. Philos. Mag., 100, 1150-1171(2020).

    [12] A. Rao et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [13] A. Rao et al. Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon. Opt. Express, 24, 29941-29947(2016).

    [14] A. Honardoost et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators. Opt. Express, 27, 6495-6501(2019).

    [15] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536-1537(2017).

    [16] R. Gao et al. Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 108. New J. Phys., 23, 123027(2021). https://doi.org/10.1088/1367-2630/ac3d52

    [17] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [18] J. Lin et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910-1936(2020).

    [19] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [20] D. Sun et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light: Sci. Appl., 9, 197(2020).

    [21] Y. Jiao et al. Improvement on thermal stability of nano-domains in lithium niobate thin films. Crystals, 10, 74(2020).

    [22] M. Younesi et al. Periodic poling with a micrometer-range period in thin-film lithium niobate on insulator. J. Opt. Soc. Am. B, 38, 685-691(2021).

    [23] B. J. Stanicki et al. Surface domain engineering in lithium niobate. OSA Contin., 3, 345-358(2020).

    [24] Y. Liu et al. On-chip erbium-doped lithium niobate microcavity laser. Sci. China Phys. Mech. Astron., 64, 234262(2021).

    [25] R. Gao et al. On-chip ultra-narrow-linewidth single-mode microlaser on lithium niobate on insulator. Opt. Lett., 46, 3131-3134(2021).

    [26] Q. Luo et al. On-chip erbium-doped lithium niobate microring lasers. Opt. Lett., 46, 3275-3278(2021).

    [27] X. Liu et al. Tunable single-mode laser on thin film lithium niobate. Opt. Lett., 46, 5505-5508(2021).

    [28] D. Yin et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett., 46, 2127-2130(2021).

    [29] R. Zhang et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China Phys. Mech. Astron., 64, 294216(2021).

    [30] M. Yu et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light: Sci. Appl., 9, 9(2020).

    [31] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [32] C. O. de Beeck et al. III/V-on-lithium niobate amplifiers and lasers. Optica, 8, 1288-1289(2021).

    [33] A. Shams-Ansari et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica, 9, 408-411(2022).

    [34] A. Honardoost, K. Abdelsalam, S. Fathpour. Rejuvenating a versatile photonic material: thin-film lithium niobate. Laser Photonics Rev., 14, 2000088(2020).

    [35] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [36] M. Xu et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica, 9, 61-62(2022).

    [37] F. Arab Juneghani et al. Demonstration of non-symmetric thin-film lithium niobate modulator with a 3-dB bandwidth beyond 100 GHz(2022).

    [38] C. Hu et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Opt. Express, 29, 5397-5406(2021).

    [39] K. Abdelsalam et al. Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate. Opt. Lett., 46, 2730-2733(2021).

    [40] K. Abdelsalam et al. Linear isolators using wavelength conversion. Optica, 7, 209-213(2020).

    [41] X. Ye et al. High-speed programmable lithium niobate thin film spatial light modulator. Opt. Lett., 46, 1037-1040(2021).

    [42] P. Franken et al. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [43] R. W. Boyd. Nonlinear Optics(2020).

    [44] A. Rao, S. Fathpour. Second-harmonic generation in integrated photonics on silicon. Phys. Status Solidi A, 215, 1700684(2018).

    [45] A. Rao, S. Fathpour. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Electron., 24, 8200912(2018).

    [46] S. Fathpour. Heterogeneous nonlinear integrated photonics. IEEE J. Quantum Electron., 54, 6300776(2018).

    [47] W. H. P. Pernice et al. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl. Phys. Lett., 100, 223501(2012).

    [48] S. May et al. Second-harmonic generation in AlGaAs-on-insulator waveguides. Opt. Lett., 44, 1339-1342(2019).

    [49] L. Chang et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photonics Rev., 12, 1800149(2018).

    [50] C. Xiong et al. Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Opt. Express, 19, 10462-10470(2011).

    [51] D. N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey(2006).

    [52] N. Li et al. Aluminium nitride integrated photonics: a review. Nanophotonics, 10, 2347-2387(2021).

    [53] H. Zhang et al. Study of nonlinear optical effects in GaN: Mg epitaxial film. Appl. Phys. Lett., 69, 2953-2955(1996).

    [54] J. Webjorn, F. Laurell, G. Arvidsson. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation. J. Lightwave Technol., 7, 1597-1600(1989).

    [55] E. Lim, M. Fejer, R. Byer. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electron. Lett., 25, 174-175(1989).

    [56] L. E. Myers et al. Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3. Opt. Lett., 21, 591-593(1996). https://doi.org/10.1364/OL.21.000591

    [57] G. Miller et al. 42%-efficient single-pass CW second-harmonic generation in periodically poled lithium niobate. Opt. Lett., 22, 1834-1836(1997).

    [58] S. Fathpour. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics, 4, 143-164(2015).

    [59] C. Lu et al. Highly tunable birefringent phase-matched second-harmonic generation in an angle-cut lithium niobate-on-insulator ridge waveguide. Opt. Lett., 47, 1081-1084(2022).

    [60] R. Luo et al. Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl., 11, 034026(2019).

    [61] A. Rao et al. Second-harmonic generation in single-mode integrated waveguides based on mode-shape modulation. Appl. Phys. Lett., 110, 111109(2017).

    [62] J. Lin et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [63] C. Wang et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 8, 2098(2017).

    [64] C. Wang et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Opt. Express, 25, 6963-6973(2017).

    [65] R. Luo et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 5, 1006-1011(2018).

    [66] J.-Y. Chen et al. Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics. OSA Contin., 1, 229-242(2018).

    [67] R. Luo et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation. Laser Photonics Rev., 13, 1800288(2019).

    [68] C. Wang et al. Integrated high quality factor lithium niobate microdisk resonators. Opt. Express, 22, 30924-30933(2014).

    [69] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626-3629(2017).

    [70] S. Liu et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. Opt. Lett., 44, 1456-1459(2019).

    [71] E. Lim et al. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electron. Lett., 25, 731-732(1989).

    [72] L. E. Myers et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102-2116(1995). https://doi.org/10.1364/JOSAB.12.002102

    [73] L. Chang et al. Thin film wavelength converters for photonic integrated circuits. Optica, 3, 531-535(2016).

    [74] J. T. Nagy, R. M. Reano. Reducing leakage current during periodic poling of ion-sliced x-cut MgO doped lithium niobate thin films. Opt. Mater. Express, 9, 3146-3155(2019).

    [75] A. Boes et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys.: Photonics, 3, 012008(2021).

    [76] J. Zhao et al. Poling thin-film x-cut lithium niobate for quasi-phase matching with sub-micrometer periodicity. J. Appl. Phys., 127, 193104(2020).

    [77] B. Slautin et al. Domain structure formation by local switching in the ion sliced lithium niobate thin films. Appl. Phys. Lett., 116, 152904(2020).

    [78] J. T. Nagy, R. M. Reano. Submicrometer periodic poling of lithium niobate thin films with bipolar preconditioning pulses. Opt. Mater. Express, 10, 1911-1920(2020).

    [79] S. Reitzig et al. “Seeing is believing”—in-depth analysis by co-imaging of periodically-poled x-cut lithium niobate thin films. Crystals, 11, 288(2021).

    [80] R. K. Prasath et al. Measurement of the internal electric field in periodically poled congruent lithium niobate crystals by far-field diffraction. Appl. Opt., 60, 3791-3796(2021).

    [81] A. Boes et al. Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage. Opt. Express, 27, 23919-23928(2019).

    [82] A. Rao et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600%W1cm2. Opt. Express, 27, 25920-25930(2019). https://doi.org/10.1364/OE.27.025920

    [83] J.-Y. Chen et al. Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings. Optica, 6, 1244-1245(2019).

    [84] J. Lu et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica, 7, 1654-1659(2020).

    [85] Z. Hao et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators. Photonics Res., 8, 311-317(2020). https://doi.org/10.1364/PRJ.382535

    [86] C. Wang et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica, 5, 1438-1441(2018).

    [87] J.-Y. Chen et al. Efficient parametric frequency conversion in lithium niobate nanophotonic chips. OSA Contin., 2, 2914-2924(2019).

    [88] J. Zhao et al. Shallow-etched thin-film lithium niobate waveguides for highly-efficient second-harmonic generation. Opt. Express, 28, 19669-19682(2020).

    [89] C. Lu et al. Second and cascaded harmonic generation of pulsed laser in a lithium niobate on insulator ridge waveguide. Opt. Express, 30, 1381-1387(2022).

    [90] J. Lu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [91] J. Lin et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl., 6, 014002(2016). https://doi.org/10.1103/PhysRevApplied.6.014002

    [92] M. Li et al. Photon-photon quantum phase gate in a photonic molecule with χ(2) nonlinearity. Phys. Rev. Appl., 13, 044013(2020). https://doi.org/10.1103/PhysRevApplied.13.044013

    [93] M. Heuck, K. Jacobs, D. R. Englund. Controlled-phase gate using dynamically coupled cavities and optical nonlinearities. Phys. Rev. Lett., 124, 160501(2020).

    [94] R. Wolf et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica, 5, 872-875(2018).

    [95] L. Zhang et al. Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes. Opt. Lett., 45, 3353-3356(2020).

    [96] G. Lin et al. Wide-range cyclic phase matching and second harmonic generation in whispering gallery resonators. Appl. Phys. Lett., 103, 181107(2013).

    [97] R. Luo et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express, 25, 24531-24539(2017).

    [98] R. Wu et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116-4119(2018). https://doi.org/10.1364/OL.43.004116

    [99] A. Fedotova et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608-8614(2020).

    [100] J. Ma et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev., 15, 2000521(2021).

    [101] Y. Li et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 9, 3575-3585(2020).

    [102] F. Renaud et al. Second-harmonic-generation enhancement in cavity resonator integrated grating filters. Opt. Lett., 44, 5198-5201(2019).

    [103] S. Yuan et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett., 127, 153901(2021).

    [104] Y. Li et al. Recent progress of second harmonic generation based on thin film lithium niobate. Chin. Opt. Lett., 19, 060012(2021).

    [105] H. Jiang et al. Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities. Appl. Phys. Lett., 113, 021104(2018).

    [106] M. Li et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators. Laser Photonics Rev., 13, 1800228(2019).

    [107] J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature mid-infrared single-photon spectral imaging. Nat. Photonics, 6, 788-793(2012).

    [108] G. Li et al. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band. Opt. Lett., 42, 939-942(2017). https://doi.org/10.1364/OL.42.000939

    [109] Z. Hao et al. Sum-frequency generation in on-chip lithium niobate microdisk resonators. Photonics Res., 5, 623-628(2017).

    [110] X. Ye et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching. Opt. Lett., 45, 523-526(2020).

    [111] A. K. Hansen et al. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals. Opt. Lett., 40, 5526-5529(2015).

    [112] T. Sjaardema, A. Rao, S. Fathpour. Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon, STh1J-1(2019).

    [113] S. Lauria, M. F. Saleh. Mixing second- and third-order nonlinear interactions in nanophotonic lithium-niobate waveguides. Phys. Rev. A, 105, 043511(2021).

    [114] R. Wolf et al. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express, 25, 29927-29933(2017).

    [115] D. D. Hickstein et al. High-harmonic generation in periodically poled waveguides. Optica, 4, 1538-1544(2017).

    [116] D. Wang et al. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide. Opt. Express, 27, 15283-15288(2019).

    [117] Y. J. Ding. Progress in terahertz sources based on difference-frequency generation. J. Opt. Soc. Am. B, 31, 2696-2711(2014).

    [118] C. Erny et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8  μm from a compact fiber source. Opt. Lett., 32, 1138-1140(2007). https://doi.org/10.1364/OL.32.001138

    [119] J. Mishra et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica, 8, 921-924(2021).

    [120] J. Yang, C. Wang. Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express, 29, 16477-16486(2021).

    [121] F. Kaufmann et al. On-chip optical parametric amplification in subwavelength lithium niobate nanowaveguides, JTu5A-52(2018).

    [122] J.-Y. Chen et al. Phase-sensitive amplification in nanophotonic periodically poled lithium niobate waveguides, SM3L-5(2020).

    [123] L. Ledezma et al. Intense optical parametric amplification in dispersion engineered nanophotonic lithium niobate waveguides(2021).

    [124] M. Jankowski et al. Quasi-static optical parametric amplification. Optica, 9, 273-279(2022).

    [125] J. Lu et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica, 8, 539-544(2021).

    [126] D. C. Burnham, D. L. Weinberg. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett., 25, 84-87(1970).

    [127] T. Jennewein et al. Quantum cryptography with entangled photons. Phys. Rev. Lett., 84, 4729-4732(2000).

    [128] D. Bouwmeester et al. Experimental quantum teleportation. Nature, 390, 575-579(1997).

    [129] B. S. Elkus et al. Generation of broadband correlated photon-pairs in short thin-film lithium-niobate waveguides. Opt. Express, 27, 38521-38531(2019).

    [130] B. S. Elkus et al. Quantum-correlated photon-pair generation via cascaded nonlinearity in an ultra-compact lithium-niobate nano-waveguide. Opt. Express, 28, 39963-39975(2020).

    [131] G.-T. Xue et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [132] J. Zhao et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [133] U. A. Javid et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett., 127, 183601(2021).

    [134] Z. Ma et al. Ultrabright quantum photon sources on chip. Phys. Rev. Lett., 125, 263602(2020).

    [135] S. Saravi, T. Pertsch, F. Setzpfandt. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater., 9, 2100789(2021).

    [136] G. I. Stegeman, D. J. Hagan, L. Torner. χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons. Opt. Quantum Electron., 28, 1691-1740(1996). https://doi.org/10.1007/BF00698538

    [137] T. Sjaardema et al. Low-harmonic generation in cascaded thin-film lithium niobate waveguides. Adv. Photonics Res., 2022, 2100262(2022).

    [138] M. Wang et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New J. Phys., 22, 073030(2020).

    [139] M. Jankowski et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 7, 40-46(2020).

    [140] M. Malinowski et al. Towards on-chip self-referenced frequency-comb sources based on semiconductor mode-locked lasers. Micromachines, 10, 391(2019).

    [141] S. Mosca et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett., 121, 093903(2018).

    [142] A. W. Bruch et al. Pockels soliton microcomb. Nat. Photonics, 15, 21-27(2021).

    [143] R. Ikuta et al. Frequency comb generation in a quadratic nonlinear waveguide resonator. Opt. Express, 26, 15551-15558(2018).

    [144] X. Wang et al. 2  μm optical frequency comb generation via optical parametric oscillation from a lithium niobate optical superlattice box resonator. Photonics Res., 10, 509-515(2022). https://doi.org/10.1364/PRJ.432076

    [145] N. Amiune et al. Optical-parametric-oscillation-based χ(2) frequency comb in a lithium niobate microresonator. Opt. Express, 29, 41378-41387(2021). https://doi.org/10.1364/OE.440206

    [146] I. Hendry et al. Experimental observation of internally pumped parametric oscillation and quadratic comb generation in a χ(2) whispering-gallery-mode microresonator. Opt. Lett., 45, 1204-1207(2020). https://doi.org/10.1364/OL.385751

    [147] J. Szabados et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators. Phys. Rev. Lett., 124, 203902(2020).

    [148] Y. Hu et al. High-efficiency and broadband electro-optic frequency combs enabled by coupled micro-resonators(2021).

    [149] T. Ren et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol. Lett., 31, 889-892(2019).

    [150] M. Xu et al. Integrated lithium niobate modulator and frequency comb generator based on Fabry-Perot resonators, JTh2B-27(2020).

    [151] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).

    [152] H. Sun et al. Recent progress in integrated electro-optic frequency comb generation. J. Semicond., 42, 041301(2021).

    [153] R. Normandin, G. I. Stegeman. Nondegenerate four-wave mixing in integrated optics. Opt. Lett., 4, 58-59(1979).

    [154] B. J. Eggleton et al. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [155] R. Loudon. The Raman effect in crystals. Adv. Phys., 13, 423-482(1964).

    [156] L. Cai et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res., 7, 1003-1013(2019).

    [157] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [158] Y. Okawachi et al. Chip-based self-referencing using integrated lithium niobate waveguides. Optica, 7, 702-707(2020).

    [159] M. Yu et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett., 44, 1222-1225(2019).

    [160] J. Lu et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett., 44, 1492-1495(2019).

    [161] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019). https://doi.org/10.1364/OPTICA.6.001138

    [162] Z. Gong et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275-1278(2020).

    [163] Z. Gong et al. Monolithic Kerr and electro-optic hybrid microcombs(2022).

    [164] Z. Gong et al. Soliton microcomb generation at 2  μm in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019). https://doi.org/10.1364/OL.44.003182

    [165] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [166] A. Honardoost et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates. IEEE Photonics J., 10, 4500909(2018).

    [167] G. F. C. Gonzalez et al. Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third-and second-order optical nonlinearities. Appl. Opt., 58, D1-D6(2019).

    [168] Y. Zhao et al. Compact lithium-niobate-on-insulator polarization rotator based on asymmetric hybrid plasmonics waveguide. IEEE Photonics J., 13, 4800105(2021).

    [169] Z. Chen et al. Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform. Photonics Res., 9, 2319-2324(2021).

    [170] X. Wang et al. Efficient polarization splitter-rotator on thin-film lithium niobate. Opt. Express, 29, 38044-38052(2021).

    [171] M. Cai et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Top. Quantum Electron., 28, 8200608(2021).

    [172] Q. Luo et al. On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett., 19, 060008(2021).

    [173] J. Zhou et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    Milad Gholipour Vazimali, Sasan Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 2022, 4(3): 034001
    Download Citation