• Matter and Radiation at Extremes
  • Vol. 7, Issue 4, 045901 (2022)
Hanzhi Zhao1、2, Zhengming Sheng1、2、3, and Suming Weng1、2、a)
Author Affiliations
  • 1Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1063/5.0086783 Cite this Article
    Hanzhi Zhao, Zhengming Sheng, Suming Weng. Nonlocal thermal transport in magnetized plasma along different directions[J]. Matter and Radiation at Extremes, 2022, 7(4): 045901 Copy Citation Text show less
    References

    [1] L. Spitzer, R.H?rm. Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977(1953).

    [2] A. R.Bell, R. G.Evans, D. J.Nicholas. Electron energy transport in steep temperature gradients in laser-produced plasmas. Phys. Rev. Lett., 46, 243(1981).

    [3] D.Hull, D. R.Gray, J. D.Kilkenny, P.Blyth, M. S.White. Observation of severe heat-flux limitation and ion-acoustic turbulence in a laser-heated plasma. Phys. Rev. Lett., 39, 1270(1977).

    [4] E. M.Epperlein, G. J.Rickard, A. R.Bell. Two-dimensional nonlocal electron transport in laser-produced plasmas. Phys. Rev. Lett., 61, 2453(1988).

    [5] W. L.Kruer, D. E.Hinkel, D. A.Callahan, L. J.Suter, P. A.Michel, E. A.Williams, H. A.Scott, M. D.Rosen, R. P. J.Town, L.Divol et al. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. High Energy Density Phys., 7, 180-190(2011).

    [6] D.Cao, G.Moses, J.Delettrez. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations. Phys. Plasmas, 22, 082308(2015).

    [7] E. M.Epperlein, R. W.Short. A practical nonlocal model for electron heat transport in laser plasmas. Phys. Fluids B, 3, 3092-3098(1991).

    [8] P. D.Nicola?, M.Busquet, G. P.Schurtz. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes. Phys. Plasmas, 7, 4238-4249(2000).

    [9] W. Y.Huo, K.Li. Nonlocal electron heat transport under the non-Maxwellian distribution function. Phys. Plasmas, 27, 062705(2020).

    [10] T. H.Kho, M. G.Haines. Nonlinear electron transport in magnetized laser plasmas. Phys. Fluids, 29, 2665-2671(1986).

    [11] P.Mora, A.Bendib, J. F.Luciani. Magnetic field and nonlocal transport in laser-created plasmas. Phys. Rev. Lett., 55, 2421(1985).

    [12] J. F.Luciani, P.Mora, J.Virmont. Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett., 51, 1664(1983).

    [13] R. V.Bravenec, W. L.Rowan, J.Heard, K. W.Gentle, G. A.Hallock, H.Gasquet, A.Ouroua, G.Cima, T. P.Crowley, P. E.Phillips et al. Strong nonlocal effects in a tokamak perturbative transport experiment. Phys. Rev. Lett., 74, 3620(1995).

    [14] P.Galli, P.Mantica, G.Gorini, G. M. D.Hogeweij, N. J.Lopes Cardozo, J.De Kloe. Nonlocal transient transport and thermal barriers in Rijnhuizen Tokamak Project plasmas. Phys. Rev. Lett., 82, 5048(1999).

    [15] B. D.Dudson, J. T.Omotani, J. P.Brodrick, M. R. K.Wigram, C. P.Ridgers. Incorporating nonlocal parallel thermal transport in 1D ITER SOL modelling. Nucl. Fusion, 60, 076008(2020).

    [16] C. R.DeVore, J. T.Karpen. Nonlocal thermal transport in solar flares. Astrophys. J., 320, 904-912(1987).

    [17] N. H.Bian, A. G.Emslie. Reduction of thermal conductive flux by non-local effects in the presence of turbulent scattering. Astrophys. J., 865, 67(2018).

    [18] J.Büchner, M. V.Alves, S. S. A.Silva, J. C.Santos. Nonlocal heat flux effects on temperature evolution of the solar atmosphere. Astron. Astrophys., 615, A32(2018).

    [19] D. M.Chambers, A.Gouveia, S. H.Glenzer, J.Hawreliak, S.Topping, P.Soundhauss, P. A.Pinto, O.Renner, R. S.Marjoribanks, R. J.Kingham et al. Thomson scattering measurements of heat flow in a laser-produced plasma. J. Phys. B: At., Mol. Opt. Phys., 37, 1541(2004).

    [20] M.Edwards, P.Davis, L.Divol, R.Town, D.Froula, B.Pollock, A.Offenberger, J.Ross, D.Price, A.James et al. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging Thomson scattering. Phys. Rev. Lett., 98, 135001(2007).

    [21] M.Tzoufras, A. R.Bell. Electron transport and shock ignition. Plasma Phys. Controlled Fusion, 53, 045010(2011).

    [22] J.Limpouch, M.Zeman, M.Holec, J.Nikl, S.Weber, M.Kucha?ík. Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation. Matter Radiat. Extremes, 3, 110-126(2018).

    [23] J.Liu, Z.Li, Z.Yang, L.Hou, L.Guo, D.Yang, K.Lan, G.Ren, S.Li, W.Huo et al. First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole. Matter Radiat. Extremes, 1, 2-7(2016).

    [24] S.Takeda, T.Johzaki, M.Horio, Y.Sentoku, M.Hino, W.Kim, S.Fujioka, A.Sunahara, T.Endo, H.Nagatomo. Intensification of laser-produced relativistic electron beam using converging magnetic fields for ignition in fast ignition laser fusion. High Energy Density Phys., 36, 100841(2020).

    [25] S.Bandyopadhyay, M.Notley, P.Fernandes, M. C.Kaluza, M.Sherlock, M. S.Wei, P. M.Nilson, S.Minardi, L.Willingale, C.Kamperidis et al. Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. Phys. Rev. Lett., 97, 255001(2006).

    [26] E. S.Weibel. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett., 2, 83(1959).

    [27] A. D.Lad, W. J.Ding, Z. M.Sheng, P.Kaw, S.Ahmad, S.Mondal, S.Sengupta, V.Narayanan, B.Hao, W. M.Wang et al. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. U. S. A., 109, 8011-8015(2012).

    [28] E. C.Harding, C. E.Myers, M. R.Gomez, S. B.Hansen, S. A.Slutz, D. A.Yager-Elorriaga, D. J.Ampleford, M. R.Weis, C. A.Jennings, K. D.Hahn et al. Performance scaling in magnetized liner inertial fusion experiments. Phys. Rev. Lett., 125, 155002(2020).

    [29] R. A.Vesey, S. A.Slutz. High-gain magnetized inertial fusion. Phys. Rev. Lett., 108, 025003(2012).

    [30] W. M.Wang, P.Gibbon, Z. M.Sheng, Y. T.Li. Magnetically assisted fast ignition. Phys. Rev. Lett., 114, 015001(2015).

    [31] S.Braginskii. Transport processes in a plasma. Rev. Plasma Phys., 1, 249-251(1965).

    [32] M. G.Haines, E. M.Epperlein. Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation. Phys. Fluids, 29, 1029-1041(1986).

    [33] H.Li, C. A.Walsh, J. D.Sadler. Symmetric set of transport coefficients for collisional magnetized plasma. Phys. Rev. Lett., 126, 075001(2021).

    [34] V.Tikhonchuk, P.Nicola?, J.-L.Feugeas, M.Olazabal-Loumé, B.Dubroca, D.Del Sorbo. Extension of a reduced entropic model of electron transport to magnetized nonlocal regimes of high-energy-density plasmas. Laser Part. Beams, 34, 412-425(2016).

    [35] G. P.Schurtz, J.-L. A.Feugeas, P. D.Nicola?. A practical nonlocal model for heat transport in magnetized laser plasmas. Phys. Plasmas, 13, 032701(2006).

    [36] A.Nishiguchi. Nonlocal electron heat transport in magnetized dense plasmas. Plasma Fusion Res., 9, 1404096(2014).

    [37] R. J.Kingham, A. G.Thomas, C. P.Ridgers. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. Phys. Rev. Lett., 100, 075003(2008).

    [38] T. W.Johnston. Cartesian tensor scalar product and spherical harmonic expansions in Boltzmann’s equation. Phys. Rev., 120, 1103(1960).

    [39] W.Rozmus, A. P. L.Robinson, M.Sherlock, A. R.Bell, R. J.Kingham. Fast electron transport in laser-produced plasmas and the KALOS code for solution of the Vlasov–Fokker–Planck equation. Plasma Phys. Controlled Fusion, 48, R37(2006).

    [40] M.Tzoufras, P. A.Norreys, F. S.Tsung, A. R.Bell. A Vlasov–Fokker–Planck code for high energy density physics. J. Comput. Phys., 230, 6475-6494(2011).

    [41] G.Cooper, J. S.Chang. A practical difference scheme for Fokker-Planck equations. J. Comput. Phys., 6, 1-16(1970).

    [42] A. R.Bell, R. J.Kingham. An implicit Vlasov–Fokker–Planck code to model non-local electron transport in 2-D with magnetic fields. J. Comput. Phys., 194, 1-34(2004).

    [43] G. D.Kerbel, D. A.Liedahl, L. J.Suter, D. E.Hinkel, O. S.Jones, W. A.Farmer, J. D.Moody, D. J.Strozzi, M. A.Barrios, J. M.Koning et al. Heat transport modeling of the dot spectroscopy platform on NIF. Plasma Phys. Controlled Fusion, 60, 044009(2018).

    [44] R. L.McCrory, R. C.Malone, R. L.Morse. Indications of strongly flux-limited electron thermal conduction in laser-target experiments. Phys. Rev. Lett., 34, 721(1975).

    [45] L. J.Suter, J. D.Kilkenny, M. A.Barrios, W.Farmer, H.Chen, M.Sherlock, O.Jones, J. D.Moody, J.Jaquez, R. L.Kauffman et al. Developing an experimental basis for understanding transport in NIF hohlraum plasmas. Phys. Rev. Lett., 121, 095002(2018).

    [46] B. J.MacGowan, S. H.Glenzer, B. H.Wilde, L. J.Suter, M. A.Blain, R. E.Turner, J. D.Lindl, G. F.Stone, C. A.Back, O. L.Landen. Thomson scattering from inertial-confinement-fusion hohlraum plasmas. Phys. Rev. Lett., 79, 1277(1997).

    [47] J. R.Davies, A. B.Sefkow, B. J.Albright, P. Y.Chang, G.Fiksel, M. J.MacDonald, D. S.Montgomery, D. H.Froula, J. L.Kline, D. H.Barnak et al. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Phys. Plasmas, 22, 010703(2015).

    [48] C.Plechaty, A. A.Esaulov, R.Presura. Focusing of an explosive plasma expansion in a transverse magnetic field. Phys. Rev. Lett., 111, 185002(2013).

    [49] A. V.Maximov, R.Betti, V. V.Ivanov, L. S.Leal, A. B.Sefkow. Modeling magnetic confinement of laser-generated plasma in cylindrical geometry leading to disk-shaped structures. Phys. Plasmas, 27, 022116(2020).

    [50] A.Guediche, W.Yao, S. S.Makarov, K. F.Burdonov, J.Béard, J.Hare, E. D.Filippov, S. N.Chen, S.Bola?os, G.Revet et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field. Sci. Rep., 11, 8180(2021).

    [51] F.Najmabadi, C. V.Bindhu, S. S.Harilal, M. S.Tillack, B.O’Shay. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E, 69, 026413(2004).

    Hanzhi Zhao, Zhengming Sheng, Suming Weng. Nonlocal thermal transport in magnetized plasma along different directions[J]. Matter and Radiation at Extremes, 2022, 7(4): 045901
    Download Citation