• Photonics Research
  • Vol. 9, Issue 3, B57 (2021)
Kangning Zhang, Junjie Hu, and Weijian Yang*
Author Affiliations
  • Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
  • show less
    DOI: 10.1364/PRJ.410556 Cite this Article Set citation alerts
    Kangning Zhang, Junjie Hu, Weijian Yang. Deep compressed imaging via optimized pattern scanning[J]. Photonics Research, 2021, 9(3): B57 Copy Citation Text show less
    References

    [1] A. Rogalski. Infrared Detectors(2010).

    [2] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag., 25, 83-91(2008).

    [3] M. P. Edgar, G. M. Gibson, M. J. Padgett. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).

    [4] G. M. Gibson, S. D. Johnson, M. J. Padgett. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190-28208(2020).

    [5] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [6] J. B. Pawley. Handbook of Biological Confocal Microscopy(2006).

    [7] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1369-1377(2003).

    [8] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [9] L. Beiser. Fundamental architecture of optical scanning systems. Appl. Opt., 34, 7307-7317(1995).

    [10] E. J. Candès. Compressive sampling. Proceedings of the International Congress of Mathematicians, 1433-1452(2006).

    [11] E. Candes, J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Prob., 23, 969(2007).

    [12] E. J. Candès, M. B. Wakin. An introduction to compressive sampling. IEEE Signal Process. Mag., 25, 21-30(2008).

    [13] A. P. Spencer, B. Spokoyny, S. Ray, F. Sarvari, E. Harel. Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing. Nat. Commun., 7, 10434(2016).

    [14] L. Bian, J. Suo, Q. Dai, F. Chen. Experimental comparison of single-pixel imaging algorithms. J. Opt. Soc. Am. A, 35, 78-87(2018).

    [15] J. B. Sampsell. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B, 12, 3242-3246(1994).

    [16] Z. H. Xu, W. Chen, J. Penuelas, M. Padgett, M. J. Sun. 1000  fps computational ghost imaging using LED-based structured illumination. Opt. Express, 26, 2427-2434(2018).

    [17] H. Wu, Z. Zheng, Y. Li, W. Dai, H. Xiong. Compressed sensing via a deep convolutional auto-encoder. IEEE Visual Communications and Image Processing (VCIP), 1-4(2018).

    [18] J. Zhang, B. Ghanem. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837(2018).

    [19] A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2, 183-202(2009).

    [20] N. Pavillon, N. I. Smith. Compressed sensing laser scanning microscopy. Opt. Express, 24, 30038-30052(2016).

    [21] L. Fang, F. Monroe, S. W. Novak, L. Kirk, C. R. Schiavon, S. B. Yu, T. Zhang, M. Wu, K. Kastner, Y. Kubota, Z. Zhang, G. Pekkurnaz, J. Mendenhall, K. Harris, J. Howard, U. Manor. Deep learning-based point-scanning super-resolution imaging(2019).

    [22] B. Li, Q.-R. Yan, Y.-F. Wang, Y.-B. Yang, Y.-H. Wang. A binary sampling Res2net reconstruction network for single-pixel imaging. Rev. Sci. Instrum., 91, 033709(2020).

    [23] H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, A. Ozcan. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).

    [24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. Imagenet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 248-255(2009).

    [25] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok. Reconnet: non-iterative reconstruction of images from compressively sensed measurements. IEEE Conference on Computer Vision and Pattern Recognition, 449-458(2016).

    [26] D. Martin, C. Fowlkes, D. Tal, J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. 8th IEEE International Conference on Computer Vision (ICCV), 416-423(2001).

    [27] S. Koho, G. Tortarolo, M. Castello, T. Deguchi, A. Diaspro, G. Vicidomini. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun., 10, 3103(2019).

    [28] T. M. Lehmann, C. Gonner, K. Spitzer. Addendum: B-spline interpolation in medical image processing. IEEE Trans. Med. Imaging, 20, 660-665(2001).

    [29] T. A. Pologruto, B. L. Sabatini, K. Svoboda. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online, 2, 13(2003).

    [30] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).

    [31] J. Feng, J. Deng, Z. Li, Z. Sun, H. Dou, K. Jia. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed. Opt. Express, 11, 5321-5340(2020).

    [32] Y. Chen, Y. Xie, Z. Zhou, F. Shi, A. G. Christodoulou, D. Li. Brain MRI super resolution using 3D deep densely connected neural networks. IEEE 15th International Symposium on Biomedical Imaging (ISBI), 739-742(2018).

    [33] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708(2017).

    [34] B. Lee, B. Ku, W.-J. Kim, S. Kim, H. Ko. Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising. J. Acoust. Soc. Korea, 39, 246-254(2020).

    [35] E. D. W. N. Pezzotti, S. Yousefi, M. S. Elmahdy, J. van Gemert, C. Schülke, M. Doneva, T. Nielsen, S. Kastryulin, B. P. F. Lelieveldt, M. J. P. van Osch, M. Staring. Adaptive-CS-Net: FastMRI with adaptive intelligence(2019).

    [36] X. Q. Zhou, Y. H. Hou, J. Q. Lin. A review on the processing accuracy of two-photon polymerization. AIP Adv., 5, 030701(2015).

    [37] T. Gissibl, S. Thiele, A. Herkommer, H. Giessen. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [38] J. W. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, R. W. Kirk, A. Orth, F. M. Wood, B. C. Gibson, D. D. Sampson, R. A. McLaughlin. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci. Rep., 8, 14789(2018).

    [39] N. Mohammad, M. Meem, X. Wan, R. Menon. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep., 7, 5789(2017).

    [40] N. Vaidya, O. Solgaard. 3D printed optics with nanometer scale surface roughness. Microsys. Nanoeng., 4, 18(2018).

    [41] Y. C. Wu, V. Boominathan, H. J. Chen, A. Sankaranarayanan, A. Veeraraghavan. PhaseCam3D-learning phase masks for passive single view depth estimation. IEEE International Conference on Computational Photography(2019).

    [42] V. Sitzmann, S. Diamond, Y. F. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, G. Wetzstein. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph., 37, 114(2018).

    [43] Q. L. Sun, J. Zhang, X. Dun, B. Ghanem, Y. F. Peng, W. Heidrich. End-to-end learned, optically coded super-resolution SPAD camera. ACM Trans. Graph., 39, 9(2020).

    [44] Y. Li, B. Sixou, F. Peyrin. A review of the deep learning methods for medical images super resolution problems. IRBM(2020).

    [45] W. Ouyang, A. Aristov, M. Lelek, X. Hao, C. Zimmer. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460-468(2018).

    [46] M. Weigert, U. Schmidt, T. Boothe, A. Muller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, E. W. Myers. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods, 15, 1090-1097(2018).

    [47] S. Zhang. High-speed 3D shape measurement with structured light methods: a review. Opt. Laser Eng., 106, 119-131(2018).

    [48] Y. C. Wu, Y. Rivenson, H. D. Wang, Y. L. Luo, E. Ben-David, L. A. Bentolila, C. Pritz, A. Ozcan. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods, 16, 1323-1331(2019).

    [49] H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, L. Waller. Deep learning for single-shot autofocus microscopy. Optica, 6, 794-797(2019).

    [50] Y. Ma, Y. Lee, C. Best-Popescu, L. Gao. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc. Natl. Acad. Sci. USA, 118, e2004176118(2020).

    [51] D. Qi, S. Zhang, C. Yang, Y. He, F. Cao, J. Yao, P. Ding, L. Gao, T. Jia, J. Liang. Single-shot compressed ultrafast photography: a review. Adv. Photon., 2, 014003(2020).

    [52] L. Gao, J. Y. Liang, C. Y. Li, L. H. V. Wang. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).

    [53] M. Alemohammad, J. Shin, D. N. Tran, J. R. Stroud, S. P. Chin, T. D. Tran, M. A. Foster. Widefield compressive multiphoton microscopy. Opt. Lett., 43, 2989-2992(2018).

    [54] P. Wijesinghe, A. Escobet-Montalban, M. Z. Chen, P. R. T. Munro, K. Dholakia. Optimal compressive multiphoton imaging at depth using single-pixel detection. Opt. Lett., 44, 4981-4984(2019).

    [55] Y.-X. Ren, C. Kong, H. He, X. Zeng, K. K. Tsia, K. K. Wong. Encrypted wide-field two-photon microscopy with single-pixel detection and compressed sensing. Appl. Phys. Express, 13, 032007(2020).

    [56] J. N. Stirman, I. T. Smith, M. W. Kudenov, S. L. Smith. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol., 34, 857-862(2016).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Kangning Zhang, Junjie Hu, Weijian Yang. Deep compressed imaging via optimized pattern scanning[J]. Photonics Research, 2021, 9(3): B57
    Download Citation