• Photonics Research
  • Vol. 9, Issue 3, 03000B57 (2021)
Kangning Zhang, Junjie Hu, and Weijian Yang*
Author Affiliations
  • Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
  • show less
    [1] Rogalski A.. Infrared Detectors(2010).
    [2] Duarte M. F., Davenport M. A., Takhar D., Laska J. N., Sun T., Kelly K. F., Baraniuk R. G.. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag., 25, 83-91(2008).
    [3] Edgar M. P., Gibson G. M., Padgett M. J.. Principles and prospects for single-pixel imaging. Nat. Photonics, 13, 13-20(2019).
    [4] Gibson G. M., Johnson S. D., Padgett M. J.. Single-pixel imaging 12 years on: a review. Opt. Express, 28, 28190-28208(2020).
    [5] Denk W., Strickler J. H., Webb W. W.. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).
    [6] Pawley J. B.. Handbook of Biological Confocal Microscopy(2006).
    [7] Zipfel W. R., Williams R. M., Webb W. W.. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1369-1377(2003).
    [8] Helmchen F., Denk W.. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).
    [9] Beiser L.. Fundamental architecture of optical scanning systems. Appl. Opt., 34, 7307-7317(1995).
    [10] Candès E. J.. Compressive sampling. Proceedings of the International Congress of Mathematicians, 1433-1452(2006).
    [11] Candes E., Romberg J.. Sparsity and incoherence in compressive sampling. Inverse Prob., 23, 969(2007).
    [12] Candès E. J., Wakin M. B.. An introduction to compressive sampling. IEEE Signal Process. Mag., 25, 21-30(2008).
    [13] Spencer A. P., Spokoyny B., Ray S., Sarvari F., Harel E.. Mapping multidimensional electronic structure and ultrafast dynamics with single-element detection and compressive sensing. Nat. Commun., 7, 10434(2016).
    [14] Bian L., Suo J., Dai Q., Chen F.. Experimental comparison of single-pixel imaging algorithms. J. Opt. Soc. Am. A, 35, 78-87(2018).
    [15] Sampsell J. B.. Digital micromirror device and its application to projection displays. J. Vac. Sci. Technol. B, 12, 3242-3246(1994).
    [16] Xu Z. H., Chen W., Penuelas J., Padgett M., Sun M. J.. 1000  fps computational ghost imaging using LED-based structured illumination. Opt. Express, 26, 2427-2434(2018).
    [17] Wu H., Zheng Z., Li Y., Dai W., Xiong H.. Compressed sensing via a deep convolutional auto-encoder. IEEE Visual Communications and Image Processing (VCIP), 1-4(2018).
    [18] Zhang J., Ghanem B.. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. IEEE Conference on Computer Vision and Pattern Recognition, 1828-1837(2018).
    [19] Beck A., Teboulle M.. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2, 183-202(2009).
    [20] Pavillon N., Smith N. I.. Compressed sensing laser scanning microscopy. Opt. Express, 24, 30038-30052(2016).
    [21] Fang L., Monroe F., Novak S. W., Kirk L., Schiavon C. R., Yu S. B., Zhang T., Wu M., Kastner K., Kubota Y., Zhang Z., Pekkurnaz G., Mendenhall J., Harris K., Howard J., Manor U.. Deep learning-based point-scanning super-resolution imaging(2019).
    [22] Li B., Yan Q.-R., Wang Y.-F., Yang Y.-B., Wang Y.-H.. A binary sampling Res2net reconstruction network for single-pixel imaging. Rev. Sci. Instrum., 91, 033709(2020).
    [23] Wang H., Rivenson Y., Jin Y., Wei Z., Gao R., Gunaydin H., Bentolila L. A., Kural C., Ozcan A.. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods, 16, 103-110(2019).
    [24] Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L.. Imagenet: a large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 248-255(2009).
    [25] Kulkarni K., Lohit S., Turaga P., Kerviche R., Ashok A.. Reconnet: non-iterative reconstruction of images from compressively sensed measurements. IEEE Conference on Computer Vision and Pattern Recognition, 449-458(2016).
    [26] Martin D., Fowlkes C., Tal D., Malik J.. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. 8th IEEE International Conference on Computer Vision (ICCV), 416-423(2001).
    [27] Koho S., Tortarolo G., Castello M., Deguchi T., Diaspro A., Vicidomini G.. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun., 10, 3103(2019).
    [28] Lehmann T. M., Gonner C., Spitzer K.. Addendum: B-spline interpolation in medical image processing. IEEE Trans. Med. Imaging, 20, 660-665(2001).
    [29] Pologruto T. A., Sabatini B. L., Svoboda K.. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online, 2, 13(2003).
    [30] Ronneberger O., Fischer P., Brox T.. U-net: convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241(2015).
    [31] Feng J., Deng J., Li Z., Sun Z., Dou H., Jia K.. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging. Biomed. Opt. Express, 11, 5321-5340(2020).
    [32] Chen Y., Xie Y., Zhou Z., Shi F., Christodoulou A. G., Li D.. Brain MRI super resolution using 3D deep densely connected neural networks. IEEE 15th International Symposium on Biomedical Imaging (ISBI), 739-742(2018).
    [33] Huang G., Liu Z., Van Der Maaten L., Weinberger K. Q.. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708(2017).
    [34] Lee B., Ku B., Kim W.-J., Kim S., Ko H.. Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising. J. Acoust. Soc. Korea, 39, 246-254(2020).
    [35] Pezzotti E. D. W. N., Yousefi S., Elmahdy M. S., van Gemert J., Schülke C., Doneva M., Nielsen T., Kastryulin S., Lelieveldt B. P. F., van Osch M. J. P., Staring M.. Adaptive-CS-Net: FastMRI with adaptive intelligence(2019).
    [36] Zhou X. Q., Hou Y. H., Lin J. Q.. A review on the processing accuracy of two-photon polymerization. AIP Adv., 5, 030701(2015).
    [37] Gissibl T., Thiele S., Herkommer A., Giessen H.. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).
    [38] Li J. W., Fejes P., Lorenser D., Quirk B. C., Noble P. B., Kirk R. W., Orth A., Wood F. M., Gibson B. C., Sampson D. D., McLaughlin R. A.. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci. Rep., 8, 14789(2018).
    [39] Mohammad N., Meem M., Wan X., Menon R.. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics. Sci. Rep., 7, 5789(2017).
    [40] Vaidya N., Solgaard O.. 3D printed optics with nanometer scale surface roughness. Microsys. Nanoeng., 4, 18(2018).
    [41] Wu Y. C., Boominathan V., Chen H. J., Sankaranarayanan A., Veeraraghavan A.. PhaseCam3D-learning phase masks for passive single view depth estimation. IEEE International Conference on Computational Photography(2019).
    [42] Sitzmann V., Diamond S., Peng Y. F., Dun X., Boyd S., Heidrich W., Heide F., Wetzstein G.. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph., 37, 114(2018).
    [43] Sun Q. L., Zhang J., Dun X., Ghanem B., Peng Y. F., Heidrich W.. End-to-end learned, optically coded super-resolution SPAD camera. ACM Trans. Graph., 39, 9(2020).
    [44] Li Y., Sixou B., Peyrin F.. A review of the deep learning methods for medical images super resolution problems. IRBM(2020).
    [45] Ouyang W., Aristov A., Lelek M., Hao X., Zimmer C.. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol., 36, 460-468(2018).
    [46] Weigert M., Schmidt U., Boothe T., Muller A., Dibrov A., Jain A., Wilhelm B., Schmidt D., Broaddus C., Culley S., Rocha-Martins M., Segovia-Miranda F., Norden C., Henriques R., Zerial M., Solimena M., Rink J., Tomancak P., Royer L., Jug F., Myers E. W.. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods, 15, 1090-1097(2018).
    [47] Zhang S.. High-speed 3D shape measurement with structured light methods: a review. Opt. Laser Eng., 106, 119-131(2018).
    [48] Wu Y. C., Rivenson Y., Wang H. D., Luo Y. L., Ben-David E., Bentolila L. A., Pritz C., Ozcan A.. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods, 16, 1323-1331(2019).
    [49] Pinkard H., Phillips Z., Babakhani A., Fletcher D. A., Waller L.. Deep learning for single-shot autofocus microscopy. Optica, 6, 794-797(2019).
    [50] Ma Y., Lee Y., Best-Popescu C., Gao L.. High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proc. Natl. Acad. Sci. USA, 118, e2004176118(2020).
    [51] Qi D., Zhang S., Yang C., He Y., Cao F., Yao J., Ding P., Gao L., Jia T., Liang J.. Single-shot compressed ultrafast photography: a review. Adv. Photon., 2, 014003(2020).
    [52] Gao L., Liang J. Y., Li C. Y., Wang L. H. V.. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature, 516, 74-77(2014).
    [53] Alemohammad M., Shin J., Tran D. N., Stroud J. R., Chin S. P., Tran T. D., Foster M. A.. Widefield compressive multiphoton microscopy. Opt. Lett., 43, 2989-2992(2018).
    [54] Wijesinghe P., Escobet-Montalban A., Chen M. Z., Munro P. R. T., Dholakia K.. Optimal compressive multiphoton imaging at depth using single-pixel detection. Opt. Lett., 44, 4981-4984(2019).
    [55] Ren Y.-X., Kong C., He H., Zeng X., Tsia K. K., Wong K. K.. Encrypted wide-field two-photon microscopy with single-pixel detection and compressed sensing. Appl. Phys. Express, 13, 032007(2020).
    [56] Stirman J. N., Smith I. T., Kudenov M. W., Smith S. L.. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol., 34, 857-862(2016).
    Copy Citation Text
    Kangning Zhang, Junjie Hu, Weijian Yang. Deep compressed imaging via optimized pattern scanning[J]. Photonics Research, 2021, 9(3): 03000B57
    Download Citation
    Received: Oct. 7, 2020
    Accepted: Jan. 13, 2021
    Posted: Jan. 15, 2021
    Published Online: Mar. 2, 2021
    The Author Email: Weijian Yang (wejyang@ucdavis.edu)