• Photonics Research
  • Vol. 9, Issue 3, 03000B57 (2021)
Kangning Zhang, Junjie Hu, and Weijian Yang*
Author Affiliations
  • Department of Electrical and Computer Engineering, University of California, Davis, California 95616, USA
  • show less

    Abstract

    The need for high-speed imaging in applications such as biomedicine, surveillance, and consumer electronics has called for new developments of imaging systems. While the industrial effort continuously pushes the advance of silicon focal plane array image sensors, imaging through a single-pixel detector has gained significant interest thanks to the development of computational algorithms. Here, we present a new imaging modality, deep compressed imaging via optimized-pattern scanning, which can significantly increase the acquisition speed for a single-detector-based imaging system. We project and scan an illumination pattern across the object and collect the sampling signal with a single-pixel detector. We develop an innovative end-to-end optimized auto-encoder, using a deep neural network and compressed sensing algorithm, to optimize the illumination pattern, which allows us to reconstruct faithfully the image from a small number of measurements, with a high frame rate. Compared with the conventional switching-mask-based single-pixel camera and point-scanning imaging systems, our method achieves a much higher imaging speed, while retaining a similar imaging quality. We experimentally validated this imaging modality in the settings of both continuous-wave illumination and pulsed light illumination and showed high-quality image reconstructions with a high compressed sampling rate. This new compressed sensing modality could be widely applied in different imaging systems, enabling new applications that require high imaging speeds.

    1. INTRODUCTION

    Landscape of imaging methods using a single-pixel detector. (a) Point scanning system where the signal from an individual pixel is sequentially recorded. (b) A conventional single-pixel camera where different patterns are sequentially projected on the entire object, and the overlap integrals between the object and each pattern are measured. (c) Deep compressed imaging via optimized pattern scanning (DeCIOPS), where a pattern is scanned across the object, and the subsampled convolution between the pattern and the object is measured.

    Figure 1.Landscape of imaging methods using a single-pixel detector. (a) Point scanning system where the signal from an individual pixel is sequentially recorded. (b) A conventional single-pixel camera where different patterns are sequentially projected on the entire object, and the overlap integrals between the object and each pattern are measured. (c) Deep compressed imaging via optimized pattern scanning (DeCIOPS), where a pattern is scanned across the object, and the subsampled convolution between the pattern and the object is measured.