• Acta Optica Sinica
  • Vol. 39, Issue 10, 1014002 (2019)
Changjin Sun1、2、3, Jibin Zhao1、2, Yuhui Zhao1、2、*, Zhenfeng He1、2, Zhiguo Wang1、2, and Yuan Gao1、2、4
Author Affiliations
  • 1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China
  • show less
    DOI: 10.3788/AOS201939.1014002 Cite this Article Set citation alerts
    Changjin Sun, Jibin Zhao, Yuhui Zhao, Zhenfeng He, Zhiguo Wang, Yuan Gao. Effects of Laser Melting Deposition Process Parameters on Ultrasonic Testing Accuracy of TA15 Titanium Alloy[J]. Acta Optica Sinica, 2019, 39(10): 1014002 Copy Citation Text show less
    References

    [1] Zhan X H, Lin X, Gao Z N et al. Modeling and simulation of the columnar-to-equiaxed transition during laser melting deposition of invar alloy[J]. Journal of Alloys and Compounds, 755, 123-134(2018). http://www.sciencedirect.com/science/article/pii/S0925838818316475

    [2] Pu Y S, Wang B Q, Zhang L G. Metal 3D printing technology[J]. Surface Technology, 47, 78-84(2018).

    [3] Gong S L[J]. Application of high power beam processing technology in aeroengine Aeronautical Manufacturing Technology, 2013, 34-37.

    [4] Wang Y Q, Shen J X, Wu H Q. Application and research status of alternative materials for 3D-printing technology[J]. Journal of Aeronautical Materials, 36, 89-98(2016).

    [5] Li S J, Murr L E, Cheng X Y et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting[J]. Acta Materialia, 60, 793-802(2012). http://www.sciencedirect.com/science/article/pii/S135964541100766X

    [6] Achenbach J D. Quantitative nondestructive evaluation[J]. International Journal of Solids and Structures, 37, 13-27(2000).

    [7] Schehl N, Kramb V, Dierken J et al. Ultrasonic assessment of additive manufactured Ti-6Al-4V[C]. AIP Conference Proceedings, 1949, 020008(2018).

    [8] Tofeldt O, Pierce S G, Smillie G et al. Investigation of fundamental ultrasonic propagation characteristics in NDT of electron beam melted additive manufactured samples. [C]∥12th European Conference on Non-Destructive Testing, June 11-15, 2018, Gothenburg, Sweden. Scotland, Glasgow: University of Strathclyde(2018).

    [9] Sol T, Hayun S, Noiman D et al. Nondestructive ultrasonic evaluation of additively manufactured AlSi10Mg samples[J]. Additive Manufacturing, 22, 700-707(2018). http://www.sciencedirect.com/science/article/pii/S2214860418300484

    [10] Gao X Y, Gao X X, Jiang T et al. Defects analysis of large additive manufacturing beam of titanium alloy[J]. Failure Analysis and Prevention, 13, 43-48(2018).

    [11] Men P, Dong S Y, Yan S X et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity[J]. Journal of Beijing University of Aeronautics and Astronautics, 44, 2312-2320(2018).

    [12] Yang P H, Shi L J, Liang J et al[J]. Experimental research on ultrasonic characteristics of TC18 additive manufacturing titanium alloy Aeronautical Manufacturing Technology, 2017, 38-42.

    [13] Li X W, Sha A X, Zhang W F et al. TA15 titanium alloy and its applying prospects on airframe[J]. Titanium Industry Progress, 20, 90-94(2003).

    [14] Li L Q, Wang J D, Wu C C et al. Temperature field of molten pool and microstructure property in laser melting depositions of Ti6Al4V[J]. Chinese Journal of Lasers, 44, 0302009(2017).

    [15] Lai Y B. Research on processing characteristics during laser metal direct desposition additive manufacturing[D]. Shenyang: University of Chinese Academy of Sciences(2015).

    [16] Halmshaw R[M]. Introduction to the non-destructive testing of welded joints(1996).

    [17] Hislop J D. Flaw size evaluation in immersed ultrasonic testing[J]. Non-Destructive Testing, 2, 183-192(1969). http://www.sciencedirect.com/science/article/pii/0029102169901108

    [18] Kleinert W. Defect sizing using non-destructive ultrasonic testing[M]. Cham: Springer(2016).

    [19] Zheng H, Lin S Q[M]. Ultrasonic testing, 20-25(2008).

    [20] Kirka M M, Greeley D A, Hawkins C et al. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting[J]. International Journal of Fatigue, 105, 235-243(2017).

    [21] Tilita G A, Chen W. Kwan C C F, et al. The effect of ultrasonic excitation on the microstructure of selective laser melted 304L stainless steel[J]. Materialwissenschaft Und Werkstofftechnik, 48, 342-348(2017). http://onlinelibrary.wiley.com/doi/10.1002/mawe.201600763/full

    [22] He B B. Characterizing of polymer morphologies & in situ monitoring of injection molding process using ultrasonic techniques[D]. Chengdu: Sichuan University(2006).

    [23] Felice M V, Fan Z. Sizing of flaws using ultrasonic bulk wave testing: a review[J]. Ultrasonics, 88, 26-42(2018). http://www.ncbi.nlm.nih.gov/pubmed/29550508

    [24] Wang K, Bao R, Liu D et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering: A, 746, 276-289(2019).

    [25] Kruth J P. Vandenbroucke B, van Vaerenbergh J, et al. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. [C]∥Les 11ièmes Assises Européennes du Prototypage Rapide, October 4-5, 2005, Paris, France. [S.l.: s.n.](2005).

    [26] Wang L, Pratt P, Felicelli S D et al. Pore formation in laser-assisted powder deposition process[J]. Journal of Manufacturing Science and Engineering, 131, 051008(2009).

    [27] Susan D F, Puskar J D, Brooks J A et al. Quantitative characterization of porosity in stainless steel LENS powders and deposits[J]. Materials Characterization, 57, 36-43(2006). http://www.sciencedirect.com/science/article/pii/S1044580305002755

    [28] Ahsan M N, Bradley R, Pinkerton A J. Microcomputed tomography analysis of intralayer porosity generation in laser direct metal deposition and its causes[J]. Journal of Laser Applications, 23, 022009(2011). http://scitation.aip.org/content/lia/journal/jla/23/2/10.2351/1.3582311

    [29] Qiu C L, Panwisawas C, Ward M et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 96, 72-79(2015). http://www.sciencedirect.com/science/article/pii/S1359645415003870

    Changjin Sun, Jibin Zhao, Yuhui Zhao, Zhenfeng He, Zhiguo Wang, Yuan Gao. Effects of Laser Melting Deposition Process Parameters on Ultrasonic Testing Accuracy of TA15 Titanium Alloy[J]. Acta Optica Sinica, 2019, 39(10): 1014002
    Download Citation