• Photonics Research
  • Vol. 6, Issue 1, 18 (2018)
Ying Zhang1, Yuehong Xu1, Chunxiu Tian2, Quan Xu1、2, Xueqian Zhang1, Yanfeng Li1, Xixiang Zhang2, Jiaguang Han1、*, and Weili Zhang1、3、4
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology Tianjin, Ministry of Education of China, Tianjin 300072, China
  • 2Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
  • 3School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 4e-mail: weili.zhang@okstate.edu
  • show less
    DOI: 10.1364/PRJ.6.000018 Cite this Article Set citation alerts
    Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, Weili Zhang. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 2018, 6(1): 18 Copy Citation Text show less
    References

    [1] X. Zhang, Z. Liu. Superlenses to overcome the diffraction limit. Nat. Mater., 7, 435-441(2008).

    [2] C. Genet, T. W. Ebbesen. Light in tiny holes. Nature, 445, 39-46(2007).

    [3] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [4] H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, K. Kawase. Terahertz sensing method for protein detection using a thin metallic mesh. Appl. Phys. Lett., 91, 253901(2007).

    [5] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [6] C. Huang, Y. Zhu. Plasmonics: manipulating light at the subwavelength scale. Act. Passive Electron. Compon., 2007, 1-13(2007).

    [7] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [8] T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi. Surface-plasmon circuitry. Phys. Today, 61, 44-50(2008).

    [9] S. A. Maier, H. A. Atwater. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys., 98, 011101(2005).

    [10] T. Jeon, D. Grischkowsky. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett., 88, 061113(2006).

    [11] F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A, 7, S94-S101(2005).

    [12] J. B. Pendry, L. Martín-Moreno, F. J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [13] L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, Y. Zhao. Smooth bridge between guided waves and spoof surface plasmon polaritons. Opt. Lett., 40, 1810-1813(2015).

    [14] L. Shen, X. Chen, T. Yang. Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt. Express, 16, 3326-3333(2008).

    [15] L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, Y. Luo. Ultra-low-loss high-contrast gratings based spoof surface plasmonic waveguide. IEEE Trans. Microw. Theory Tech., 65, 2008-2018(2017).

    [16] B. You, C. Peng, J. Jhang, H. Chen, C. Yu, W. Lai, T. Liu, J. Peng, J. Lu. Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing. Opt. Express, 22, 11340-11350(2014).

    [17] C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, F. J. García-Vidal. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photonics, 2, 175-179(2008).

    [18] A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal. Guiding terahertz waves along subwavelength channels. Phys. Rev. B, 79, 233104(2009).

    [19] A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, F. J. García-Vidal. Terahertz wedge plasmon polaritons. Opt. Express, 34, 2063-2065(2009).

    [20] J. Y. Yin, J. Ren, H. C. Zhang, Q. Zhang, T. J. Cui. Capacitive-coupled series spoof surface plasmon polaritons. Sci. Rep., 6, 24605(2016).

    [21] Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, Q. Qing. High-contrast gratings based spoof surface plasmons. Sci. Rep., 6, 21199(2016).

    [22] H. C. Zhang, S. Liu, X. Shen, L. Chen, L. H. Li, T. J. Cui. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photon. Rev., 9, 83-90(2015).

    [23] J. Y. Yin, J. Ren, H. C. Zhang, B. C. Pan, T. J. Cui. Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure. Sci. Rep., 5, 8165(2015).

    [24] X. Gao, L. Zhou, T. J. Cui. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial. Sci. Rep., 5, 9250(2015).

    [25] Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, Y. Zhou. Localized spoof surface plasmons based on closed subwavelength high contrast gratings: concept and microwave-regime realizations. Sci. Rep., 6, 27158(2016).

    [26] Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, Y. Zhao. Multi-band localized spoof plasmons with texturing closed surfaces. Appl. Phys. Lett., 104, 101603(2014).

    [27] G. Kumar, S. Li, M. M. Jadidi, T. E. Murphy. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J. Phys., 15, 085031(2013).

    [28] D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno. Domino plasmons for subwavelength terahertz circuitry. Opt. Express, 18, 754-764(2010).

    [29] Q. Gan, Z. Fu, Y. J. Ding, F. J. Bartoli. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett., 100, 256803(2008).

    [30] S. A. Maier, S. R. Andrews. Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces. Appl. Phys. Lett., 88, 251120(2006).

    [31] S. A. Maier, S. R. Andrews, L. Martin-Moreno, F. J. Garcia-Vidal. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett., 97, 176805(2006).

    [32] Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, Y. Luo. Effective surface plasmon polaritons induced by modal dispersion in a waveguide. Phys. Rev. Appl., 7, 044028(2017).

    [33] L. Liu, Z. Li, B. Xu, C. Gu, C. Chen, P. Ning, J. Yan, X. Chen. High-efficiency transition between rectangular waveguide and domino plasmonic waveguide. AIP Adv., 5, 027105(2015).

    [34] A. Kumar, S. Aditya. Perfomance of S-bends for integrated-optic waveguides. Microw. Opt. Technol. Lett., 19, 289-292(1998).

    [35] T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, A. V. Zayats. Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt. Express, 16, 13585-13592(2008).

    [36] T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux. Design and characterization of dielectric-loaded plasmonic directional couplers. J. Lightwave Technol., 27, 5521-5528(2009).

    [37] M. Koshiba. Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol., 19, 1970-1975(2001).

    CLP Journals

    [1] Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, Weili Zhang. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2020, 2(1): 014001

    [2] Quan Xu, Xueqian Zhang, Yuehong Xu, Chunmei Ouyang, Yanfeng Li, Jiaguang Han, Weili Zhang. Near-field manipulation of terahertz surface waves by metasurfaces [Invited][J]. Chinese Optics Letters, 2018, 16(5): 050002

    Ying Zhang, Yuehong Xu, Chunxiu Tian, Quan Xu, Xueqian Zhang, Yanfeng Li, Xixiang Zhang, Jiaguang Han, Weili Zhang. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 2018, 6(1): 18
    Download Citation