• Journal of Semiconductors
  • Vol. 42, Issue 10, 101605 (2021)
Hua Kong1、2, Wentao Sun2, and Huanping Zhou1
Author Affiliations
  • 1School of Materials Science and Engineering, Peking University, Beijing 100871, China
  • 2Key Laboratory for the Physics and Chemistry of Nanodevices Department of Electronics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1088/1674-4926/42/10/101605 Cite this Article
    Hua Kong, Wentao Sun, Huanping Zhou. Progress in flexible perovskite solar cells with improved efficiency[J]. Journal of Semiconductors, 2021, 42(10): 101605 Copy Citation Text show less
    References

    [1] M Graetzel, R A J Janssen, D B Mitzi et al. Materials interface engineering for solution-processed photovoltaics. Nature, 488, 304(2012).

    [2] W Chen, Y Wu, Y Yue et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350, 944(2015).

    [3] H Chen, F Ye, W T Tang et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 550, 92(2017).

    [4] H Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).

    [5] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [6] L G Wang, H P Zhou, J N Hu et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363, 265(2019).

    [7] Q Jiang, Y Zhao, X W Zhang et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 13, 460(2019).

    [8] E H Jung, N J Jeon, E Y Park et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511(2019).

    [9] D Weber. CH3NH3SnBrxI3–x (x = 0–3), a Sn(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 33, 862(2014).

    [10] Weber D. CH3NH3PBX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift Fur Naturforschung B, 33, 1443(2014).

    [11] M Kim, G H Kim, T K Lee et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3, 2179(2019).

    [12] J Burschka, N Pellet, S J Moon et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316(2013).

    [13] H Zhou, Q Chen, G Li et al. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542(2014).

    [14] W S Yang, B W Park, E H Jung et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376(2017).

    [15] N J Jeon, J H Noh, W S Yang et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517, 476(2015).

    [16] W S Yang, J H Noh, N J Jeon et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234(2015).

    [17] L K Yang, Q Xiong, Y B Li et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 9, 1574(2021).

    [18] M H Kumar, N Yantara, S Dharani et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb), 49, 11089(2013).

    [19] C Roldán-Carmona, O Malinkiewicz, A Soriano et al. Flexible high efficiency perovskite solar cells. Energy Environ Sci, 7, 994(2014).

    [20] S S Shin, W S Yang, J H Noh et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat Commun, 6, 7410(2015).

    [21] D Yang, R X Yang, X D Ren et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater, 28, 5206(2016).

    [22] J Yoon, H Sung, G Lee et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ Sci, 10, 337(2017).

    [23] J S Feng, X J Zhu, Z Yang et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 30, 1801418(2018).

    [24] K Q Huang, Y Y Peng, Y X Gao et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 9, 1901419(2019).

    [25] X C Meng, Z R Cai, Y Y Zhang et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat Commun, 11, 3016(2020).

    [26] Q S Dong, M Chen, Y H Liu et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 5, 1587(2021).

    [27] M Li, Y G Yang, Z K Wang et al. Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv Mater, 31, 1901519(2019).

    [28] V Zardetto, T M Brown, A Reale et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B, 49, 638(2011).

    [29] M Lee, Y Jo, D S Kim et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J Mater Chem A, 3, 4129(2015).

    [30] M Lee, Y Ko, Y Jun. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. J Mater Chem A, 3, 19310(2015).

    [31] M Lee, Y Ko, B K Min et al. Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. ChemSusChem, 9, 31(2016).

    [32] J Troughton, D Bryant, K Wojciechowski et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J Mater Chem A, 3, 9141(2015).

    [33] G S Han, S Lee, M L Duff et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 10, 4697(2018).

    [34] Y M Xiao, G Y Han, H H Zhou et al. An efficient titanium foil based perovskite solar cell: Using a titanium dioxide nanowire array anode and transparent poly(3, 4-ethylenedioxythiophene) electrode. RSC Adv, 6, 2778(2016).

    [35] B Abdollahi Nejand, P Nazari, S Gharibzadeh et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem Commun Camb Engl, 53, 747(2017).

    [36] M M Tavakoli, K H Tsui, Q Zhang et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 9, 10287(2015).

    [37] X Z Dai, Y H Deng, C H van Brackle et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv Energy Mater, 10, 1903108(2020).

    [38] B Dou, E M Miller, J A Christians et al. High-performance flexible perovskite solar cells on ultrathin glass: Implications of the TCO. J Phys Chem Lett, 8, 4960(2017).

    [39] K Mahmood, S Sarwar, M T Mehran. Current status of electron transport layers in perovskite solar cells: Materials and properties. RSC Adv, 7, 17044(2017).

    [40] D Y Liu, T L Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 8, 133(2014).

    [41] T Y Jin, W Li, Y Q Li et al. High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv Opt Mater, 6, 1801153(2018).

    [42] L J Zuo, Z W Gu, T Ye et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J Am Chem Soc, 137, 2674(2015).

    [43] R Azmi, C L Lee, I H Jung et al. Simultaneous improvement in efficiency and stability of low-temperature-processed perovskite solar cells by interfacial control. Adv Energy Mater, 8, 1702934(2018).

    [44] R Azmi, W T Hadmojo, S Sinaga et al. High-efficiency low-temperature ZnO based perovskite solar cells based on highly polar, nonwetting self-assembled molecular layers. Adv Energy Mater, 8, 1701683(2018).

    [45] J X Song, L J Liu, X F Wang et al. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. J Mater Chem A, 5, 13439(2017).

    [46] X K Huang, J Yang, S Mao et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 26, 4326(2014).

    [47] J L Yang, B D Siempelkamp, E Mosconi et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater, 27, 4229(2015).

    [48] P Docampo, J M Ball, M Darwich et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 4, 2761(2013).

    [49] D Yang, R X Yang, J Zhang et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 8, 3208(2015).

    [50] Giacomo F Di, V Zardetto, A D'Epifanio et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater, 5, 1401808(2015).

    [51] I Jeong, H Jung, M Park et al. A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy, 28, 380(2016).

    [52] Y Dkhissi, F Z Huang, S Rubanov et al. Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J Power Sources, 278, 325(2015).

    [53] N Ahn, K Kwak, M S Jang et al. Trapped charge-driven degradation of perovskite solar cells. Nat Commun, 7, 1(2016).

    [54] P Qin, S Tanaka, S Ito et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun, 5, 3834(2014).

    [55] B Wu, K W Fu, N Yantara et al. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv Energy Mater, 5, 1500829(2015).

    [56] B J Kim, M C Kim, D G Lee et al. Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv Mater Interfaces, 5, 1800993(2018).

    [57] C L Wang, D W Zhao, C R Grice et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A, 4, 12080(2016).

    [58] Q Jiang, L Q Zhang, H L Wang et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy, 2, 16177(2017).

    [59] M Park, J Y Kim, H J Son et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 26, 208(2016).

    [60] C L Wang, L Guan, D W Zhao et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells. ACS Energy Lett, 2, 2118(2017).

    [61] S S Shin, W S Yang, E J Yeom et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J Phys Chem Lett, 7, 1845(2016).

    [62] J Ha, H Kim, H Lee et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 161, 338(2017).

    [63] J Chung, S S Shin, K Hwang et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 13, 4854(2020).

    [64] X Yin, P Chen, M Que et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano, 10, 3630(2016).

    [65] H Zhang, J Q Cheng, F Lin et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 10, 1503(2016).

    [66] J W Jo, M S Seo, M Park et al. Improving performance and stability of flexible planar-heterojunction perovskite solar cells using polymeric hole-transport material. Adv Funct Mater, 26, 4464(2016).

    [67] W M Qiu, U W Paetzold, R Gehlhaar et al. An electron beam evaporated TiO2layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. J Mater Chem A, 3, 22824(2015).

    [68] C Bi, B Chen, H T Wei et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 29, 1605900(2017).

    [69] M D Xiao, F Z Huang, W C Huang et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem, 126, 10056(2014).

    [70] N J Jeon, J H Noh, Y C Kim et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 13, 897(2014).

    [71] Z B Yang, C C Chueh, F Zuo et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater, 5, 1500328(2015).

    [72] Z Wang, L X Zeng, C L Zhang et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv Funct Mater, 30, 2001240(2020).

    [73] C Chen, C Wu, X D Ding et al. Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells. Nano Energy, 71, 104604(2020).

    [74] D Luo, W Yang, Z Wang et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360, 1442(2018).

    [75] J Xi, K Xi, A Sadhanala et al. Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 56, 741(2019).

    [76] M Z Liu, M B Johnston, H J Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395(2013).

    [77] T Lei, F H Li, X Y Zhu et al. Flexible perovskite solar modules with functional layers fully vacuum deposited. Sol RRL, 4, 2000292(2020).

    [78] Y Y Kim, T Y Yang, R Suhonen et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat Commun, 11, 5146(2020).

    [79] Z C Yang, W J Zhang, S H Wu et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Sci Adv, 7, eabg3749(2021).

    [80] S Razza, S Castro-Hermosa, A Di Carlo et al. Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater, 4, 091508(2016).

    [81] C T Zuo, D Vak, D C Angmo et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185(2018).

    [82] Q D Tai, X Y Guo, G Q Tang et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew Chem Int Ed, 58, 806(2019).

    [83] X C Meng, Z Xing, X T Hu et al. Stretchable perovskite solar cells with recoverable performance. Angew Chem Int Ed, 59, 16602(2020).

    [84] B J Kim, D H Kim, Y Y Lee et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy Environ Sci, 8, 916(2015).

    [85] F Louwet, L Groenendaal, J Dhaen et al. PEDOT/PSS: Synthesis, characterization, properties and applications. Synth Met, 135/136, 115(2003).

    [86] J Huang, P F Miller, J C de Mello et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synth Met, 139, 569(2003).

    [87] M Kaltenbrunner, G Adam, E D Głowacki et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater, 14, 1032(2015).

    [88] J Han, S Yuan, L N Liu et al. Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze. J Mater Chem A, 3, 5375(2015).

    [89] H Lu, J Sun, H Zhang et al. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 8, 5946(2016).

    [90] K K Sears, M Fievez, M Gao et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-Die coated silver nanowire electrodes. Sol RRL, 1, 1700059(2017).

    [91] Y W Li, L Meng, Y Yang et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun, 7, 10214(2016).

    [92] H Bian, D L Bai, Z W Jin et al. Graded bandgap CsPbI2+xBr1−x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2, 1500(2018).

    [93] Z Li, S A Kulkarni, P P Boix et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano, 8, 6797(2014).

    [94] X Y Wang, Z Li, W J Xu et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 11, 728(2015).

    [95] I Jeon, T Chiba, C Delacou et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett, 15, 6665(2015).

    [96] Q Luo, H Ma, F Hao et al. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Funct Mater, 27, 1703068(2017).

    [97] J Deng, L B Qiu, X Lu et al. Elastic perovskite solar cells. J Mater Chem A, 3, 21070(2015).

    [98] S Ameen, M S Akhtar, H K Seo et al. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: Optoelectronic transient and charge trapping studies. J Phys Chem C, 119, 10379(2015).

    [99] Z K Liu, P You, C Xie et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 28, 151(2016).

    [100] Q Luo, H Ma, Q Hou et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 28, 1706777(2018).

    [101] Q X Fu, X L Tang, B Huang et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 5, 1700387(2018).

    [102] F Matteocci, L Cinà, E Lamanna et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 30, 162(2016).

    [103] G S Han, J S Yoo, F D Yu et al. Highly stable perovskite solar cells in humid and hot environment. J Mater Chem A, 5, 14733(2017).

    [104] J S Yoo, G S Han, S Lee et al. Dual function of a high-contrast hydrophobic-hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Res, 10, 3885(2017).

    Hua Kong, Wentao Sun, Huanping Zhou. Progress in flexible perovskite solar cells with improved efficiency[J]. Journal of Semiconductors, 2021, 42(10): 101605
    Download Citation