• Journal of Innovative Optical Health Sciences
  • Vol. 17, Issue 1, 2350016 (2024)
Yongwei Wang1、2, Yuyang Wan1、2, and Zhongjiang Chen3、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, P. R. China
  • 2College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
  • 3School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, P. R. China
  • show less
    DOI: 10.1142/S1793545823500165 Cite this Article
    Yongwei Wang, Yuyang Wan, Zhongjiang Chen. Intravascular photoacoustic and optical coherence tomography imaging dual-mode system for detecting spontaneous coronary artery dissection: A feasibility study[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2350016 Copy Citation Text show less
    References

    [1] H. C. Pretty. Dissecting aneurysm of coronary artery in a woman aged 42. Brit. Med. J., 1, 667(1931).

    [2] S. Tsimikas et al. Spontaneous coronary artery dissection in patients with renal transplantation. J. Invasive Cardiol., 11, 316-321(1999).

    [3] K. H. Mortensen et al. Spontaneous coronary artery dissection: A western Denmark heart registry study. Catheter. Cardiovasc. Interv., 74, 710-717(2009).

    [4] C. J. M. Vrints. Spontaneous coronary artery dissection. Heart, 96, 801-808(2010).

    [5] F. Alfonso et al. Spontaneous coronary artery dissection: Novel insights on diagnosis and management. Cardiovasc. Diagn. Ther., 5, 133(2015).

    [6] W. I. Schievink. Spontaneous dissection of the carotid and vertebral arteries. N. Engl. J. Med., 344, 898-906(2001).

    [7] W. Völker et al. The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology, 76, 1463-1471(2011).

    [8] M. Thomas et al. Early natural history of spontaneous coronary artery dissection. Circ. Cardiovasc. Interv., 11, e006772(2018).

    [9] F. Alfonso et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J. Am. Coll. Cardiol., 59, 1073-1079(2012).

    [10] M. Paulo et al. Combined use of OCT and IVUS in spontaneous coronary artery dissection. JACC Cardiovasc. Imaging, 6, 830-832(2013).

    [11] A. Maehara et al. Intravascular ultrasound assessment of spontaneous coronary artery dissection. Am. J. Cardiol., 89, 466-468(2002).

    [12] J. Saw. Coronary angiogram classification of spontaneous coronary artery dissection. Catheter. Cardiovasc. Interv., 84, 1115-1122(2013).

    [13] L. McGrath-Cadell, C. J. Holloway. Early aftermath of spontaneous coronary artery dissection. Circ. Cardiovasc. Interv., 11, e007237(2018).

    [14] M. S. Tweet et al. Multimodality imaging for spontaneous coronary artery dissection in women. JACC Cardiovasc. Imaging, 9, 436-450(2016).

    [15] J. Saw et al. Angiographic appearance of spontaneous coronary artery dissection with intramural hematoma proven on intracoronary imaging. Catheter. Cardiovasc. Interv., 87, E54-E61(2015).

    [16] B. C. Das Neves et al. Evolutive recanalization of spontaneous coronary artery dissection: Insights from a multimodality imaging approach. Circulation, 129, 719-720(2014).

    [17] N. Vasile et al. Computed tomography of thoracic aortic dissection: Accuracy and pitfalls. J. Comput. Assist. Tomogr., 10, 211-215(1986).

    [18] R. Gebker et al. Comparison of different MRI techniques for the assessment of thoracic aortic pathology: 3D contrast enhanced MR angiography, turbo spin echo and balanced steady state free precession. Int. J. Card. Imaging, 23, 747-756(2007).

    [19] T. Sommer et al. Aortic dissection: A comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology, 199, 347-352(1996).

    [20] F. Alfonso, E. Canales, G. Aleong. Spontaneous coronary artery dissection: Diagnosis by optical coherence tomography. Eur. Heart J., 30, 385(2008).

    [21] K. Ishibashi, H. Kitabata, T. Akasaka. Intracoronary optical coherence tomography assessment of spontaneous coronary artery dissection. Heart, 95, 818(2009).

    [22] J.-H. Lee, J.-S. Park. Optical coherence tomography findings of spontaneous coronary artery dissection after conservative treatment. Coron. Artery Dis., 32, 473-474(2020).

    [23] F. Prati et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J., 31, 401-415(2009).

    [24] W. F. Cheong, S. A. Prahl, A. J. Welch. A review of the optical properties of biological tissues. IEEE J. Quantum Electron, 26, 2166-2185(1990).

    [25] L. Yan et al. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging. Biomed. Opt. Express, 8, 1036-1044(2017).

    [26] Y. Li et al. Intravascular optical coherence tomography for characterization of atherosclerosis with a 1.7 micron swept-source laser. Sci. Rep., 7, 14525(2017).

    [27] G. J. Tearney et al. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC Cardiovasc. Imaging, 1, 752-761(2008).

    [28] Z. Yaqoob et al. Methods and application areas of endoscopic optical coherence tomography. J. Biomed. Opt., 11, 063001(2006).

    [29] C. H. Li, L. V. Wang. Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol., 54, R59-R97(2009).

    [30] P. Wang et al. Intravascular tri-modality system: Combined ultrasound, photoacoustic, and elasticity imaging. Appl. Phys. Lett., 113, 253701(2018).

    [31] L. Wang et al. Tapered fiber-based intravascular photoacoustic endoscopy for high-resolution and deep-penetration imaging of lipid-rich plaque. Catheter. Cardiovasc. Interv., 84, 1115-1122(2019).

    [32] X. Ma et al. Suppression of reverberations at fiber tips for optical ultrasound sensing. Opt. Lett., 45, 2526-2529(2020).

    [33] X. Ma et al. Fiber optic-based laser interferometry array for three-dimensional ultrasound sensing. Opt. Lett., 44, 5852-5855(2019).

    [34] H. Schulz-Hildebrandt et al. High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography. Opt. Lett., 43, 4386-4389(2018).

    [35] G. J. Tearney et al. Catheter-based optical imaging of a human coronary artery. Circulation, 94, 3013(1996).

    [36] M. J. Gora et al. Endoscopic optical coherence tomography: Technologies and clinical applications. Biomed. Opt. Express, 8, 2405-2444(2017).

    [37] Y. Yi et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomed. Opt. Express, 2, 2551-2561(2011).

    [38] S. Liang et al. Trimodality imaging system and intravascular endoscopic probe combined optical coherence tomography, fluorescence imaging and ultrasound imaging. Opt. Lett., 39, 6652-6655(2014).

    [39] X. Dai et al. Miniature endoscope for multimodal imaging. ACS Photon., 4, 174-180(2017).

    [40] J. Leng et al. Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging. Biomed. Opt. Express, 12, 1934-1946(2021).

    [41] W. Yuan et al. Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging. Opt. Lett., 41, 250-253(2016).

    [42] W. Yuan et al. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800nm. Nat. Commun., 8, 1531(2017).

    [43] J. Jose et al. Imaging of tumor vasculature using Twente photoacoustic systems. J. Biophoton., 2, 701-717(2009).

    [44] B. L. Bungart et al. Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. Photoacoustics, 11, 46-55(2018).

    [46] K.-X. Qing et al. Ex-vivo haemodynamic models for the study of stanford type B aortic dissection in isolated Porcine Aorta. Eur. J. Vasc. Endovasc. Surg., 44, 399-405(2012).

    [47] E. M. Faure et al. Human ex-vivo model of Stanford type B aortic dissection. J. Vasc. Surg., 60, 767-775(2014).

    [48] J. Hui et al. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Sci. Rep., 7, 1417(2017).

    [49] M. Wu et al. Real-time volumetric lipid imaging in vivo by intravascular photoacoustic at 20 frames per second. Biomed. Opt. Express, 8, 943-953(2017).

    [50] A. Durrani et al. Optical rotary junction incorporating a hollow shaft DC motor for high-speed catheter-based optical coherence tomography. Opt. Lett., 45, 487(2020).

    [51] Y. C. Cao et al. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design. Sci. Rep., 6, 25236(2016).

    [52] X. R. Ji et al. Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer. Opt. Express, 23, 9130(2015).

    [53] Y. Li et al. PMN-PT/Epoxy 1-3 composite based ultrasonic transducer for dual-modality photoacoustic and ultrasound endoscopy. Photoacoustics, 15, 100138(2019).

    [54] S. Lightman et al. Vortex-Bessel beam generation by 3D direct printing of an integrated multi-optical element on a fiber tip. Opt. Lett., 47, 5248-5251(2022).

    [55] I. V. A. K. Reddy, A. Bertoncini, C. Liberale. 3D-printed fiber-based zeroth-and high-order Bessel beam generator. Optica, 9, 645-651(2022).

    Yongwei Wang, Yuyang Wan, Zhongjiang Chen. Intravascular photoacoustic and optical coherence tomography imaging dual-mode system for detecting spontaneous coronary artery dissection: A feasibility study[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2350016
    Download Citation