• Opto-Electronic Advances
  • Vol. 3, Issue 8, 200009-1 (2020)
Fangchen Hu1, Jorge A. Holguin-Lerma2, Yuan Mao2, Peng Zou1, Chao Shen2, Tien Khee Ng2, Boon S. Ooi2、*, and Nan Chi1
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
  • 2Photonics Labora-tory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
  • show less
    DOI: 10.29026/oea.2020.200009 Cite this Article
    Fangchen Hu, Jorge A. Holguin-Lerma, Yuan Mao, Peng Zou, Chao Shen, Tien Khee Ng, Boon S. Ooi, Nan Chi. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode[J]. Opto-Electronic Advances, 2020, 3(8): 200009-1 Copy Citation Text show less
    References

    [1] 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications 1325-1329 (IEEE, 2000); http://doi.org/10.1109/PIMRC.2000.881634.

    [2] N Chi, H Haas, M Kavehrad, T D C Little, X L Huang. Visible light communications: demand factors, benefits and opportunities[Guest Editorial]. IEEE Wirel Commun, 22, 5-7(2015).

    [3] H Haas. LiFi is a paradigm-shifting 5G technology. Rev Phys, 3, 26-31(2018).

    [4] C L Russell. 5 G wireless telecommunications expansion: Public health and environmental implications. Environ Res, 165, 484-495(2018).

    [5] Y L Zhang, L Wang, K Wang, K S Wong, K S Wu. Recent advances in the hardware of visible light communication. IEEE Access, 7, 91093-91104(2019).

    [6] G Stepniak, M Kowalczyk, L Maksymiuk, J Siuzdak. Transmission beyond 100 Mbit/s using LED both as a transmitter and receiver. IEEE Photon Technol Lett, 27, 2067-2070(2015).

    [7] K T Ho, R Chen, G Y Liu, C Shen, J Holguin-Lerma et al. 3.2 Gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector. Opt Express, 26, 3037-3045(2018).

    [8] C H Kang, G Y Liu, C Lee, O Alkhazragi, J M Wagstaff et al. Semipolar (2021) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. Appl Phys Express, 13, 014001(2020).

    [9] C H Cheng, C C Shen, H Y Kao, D H Hsieh, H Y Wang et al. 850/940-nm VCSEL for optical communication and 3D sensing. Opto-Electron Adv, 1, 180005(2018).

    [10] D Tsonev, H Chun, S Rajbhandari, J J D McKendry, S Videv et al. A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μ LED. IEEE Photon Technol Lett, 26, 637-640(2014).

    [11] B Janjua, H M Oubei, Retamal J R Durán, T K Ng, C T Tsai et al. Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. Opt Express, 23, 18746-18753(2015).

    [12] R Bian, I Tavakkolnia, H Haas. 15.73 Gb/s visible light communication with off-the-shelf LEDs. J Light Technol, 37, 2418-2424(2019).

    [13] Optical Fiber Communication Conference (OFC) M3I.5 (OSA, 2019); http://doi.org/10.1364/OFC.2019.M3I.5.

    [14] Wei L Y, Chow C W, Liu Y, Yeh C H. Multi-Gbit/s phosphor-based white-light and blue-filter-free visible light communication and lighting system with practical transmission distance. Opt Express28, 7375-7381 (2020).

    [15] E Feltin, A Castiglia, G Cosendey, L Sulmoni, J F Carlin et al. Broadband blue superluminescent light-emitting diodes based on GaN. Appl Phys Lett, 95, 081107(2009).

    [16] A Kafar, S Stańczyk, P Wiśniewski, T Oto, I Makarowa et al. Design and optimization of InGaN superluminescent diodes. Phys Status Solidi, 212, 997-1004(2015).

    [17] C Shen, T K Ng, J T Leonard, A Pourhashemi, S Nakamura et al. High-brightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Opt Lett, 41, 2608-2611(2016).

    [18] R Cahill, P P Maaskant, M Akhter, B Corbett. High power surface emitting InGaN superluminescent light-emitting diodes. Appl Phys Lett, 115, 171102(2019).

    [19] A Rashidi, A K Rishinaramangalam, A A Aragon, S Mishkat-Ul-Masabih, M Monavarian et al. High-speed nonpolar InGaN/GaN superluminescent diode with 2.5 GHz modulation bandwidth. IEEE Photon Technol Lett, 32, 383-386(2020).

    [20] Proceedings of the SPIE 10483, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXⅡ, 104832T (SPIE, 2018); http://doi.org/10.1117/12.2288246.

    [21] G R Goldberg, A Boldin, S M L Andersson, P Ivanov, N Ozaki et al. Gallium nitride superluminescent light emitting diodes for optical coherence tomography applications. IEEE J Sel Top Quantum Electron, 23, 2000511(2017).

    [22] Proceedings of the SPIE Digital Optical Technologies 2019 110620F (SPIE, 2019); http://doi.org/10.1117/12.2527626.

    [23] A A Alatawi, J A Holguin-Lerma, C H Kang, C Shen, R C Subedi et al. High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Opt Express, 26, 26355-26364(2018).

    [24] C Shen, C Lee, T K Ng, S Nakamura, J S Speck et al. High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. Opt Express, 24, 20281-20286(2016).

    [25] C Shen, J A Holguin-Lerma, A A Alatawi, P Zou, N Chi et al. Group-Ⅲ-nitride superluminescent diodes for solid-state lighting and high-speed visible light communications. IEEE J Sel Top Quantum Electron, 25, 2000110(2019).

    [26] Proceedings of the SPIE 11307, Broadband Access Communication Technologies XIV 113070H (SPIE, 2020); http://doi.org/10.1117/12.2543983.

    [27] N Chi, M Shi. Advanced modulation formats for underwater visible light communications[Invited]. Chin Opt Lett, 16, 120603(2018).

    [28] Wu F M, Lin C T, Wei C C, Chen C W, Chen Z Y et al. Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication. IEEE Photonics J5, 7901507 (2013).

    [29] 2019 IEEE/CIC International Conference on Communications in China (ICCC) 173-176 (IEEE, 2019); http://doi.org/10.1109/ICCChina.2019.8855926.

    [30] Rodes R, Wieckowski M, Pham T T, Jensen J B, Turkiewicz J et al. Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON. Opt Express19, 26551-26556 (2011).

    [31] I N Osahon, S Rajbhandari, W O Popoola. Performance comparison of equalization techniques for SI-POF multi-Gigabit communication with PAM- M and device non-linearities. J Light Technol, 36, 2301-2308(2018).

    [32] J L Feng, S N Lu. Performance analysis of various activation functions in artificial neural networks. J Phys: Conf Ser, 1237, 022030(2019).

    [33] Zhang J. Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-Fiber LTE mobile fronthaul. In Optical Fiber Communications Conference (OFC), Tu2B.3 (OSA, 2016).

    [34] D R Morgan, Z Ma, J Kim, M G Zierdt, J Pastalan. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans Signal Process, 54, 3852-3860(2006).

    [35] Ramachandran P, Zoph B, Le Q V. Searching for activation functions. arXiv: 1710.05941 (2017).

    [36] 2018 European Conference on Optical Communication (ECOC) 1-3 (IEEE, 2018); http://doi.org/10.1109/ECOC.2018.8535327.

    [37] X Y Lu, C Lu, W X Yu, L Qiao, S Y Liang et al. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Opt Express, 27, 7822-7833(2019).

    [38] Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 661-670 (ACM Press, 2014); http://doi.org/10.1145/2623330.2623612.

    [39] N Chi, Y J Zhou, S Y Liang, F M Wang, J H Li et al. Enabling technologies for high-Speed visible Light communication employing CAP modulation. J Light Technol, 36, 510-518(2018).

    [40] Y G Wang, L Tao, X X Huang, J Y Shi, N Chi. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer. IEEE Photon J, 7, 7904507(2015).

    [41] Haigh P A, Chvojka P, Zvánovec S, Ghassemlooy Z, Darwazeh I. Analysis of Nyquist pulse shapes for carrierless amplitude and phase modulation in visible light communications. J Light Technol36, 5023-5029 (2018).

    [42] J Y Shi, Y J Zhou, J W Zhang, N Chi, J J Yu. Enhanced performance utilizing joint processing algorithm for CAP signals. J Light Technol, 36, 3169-3175(2018).

    [43] N Chi, Y H Zhao, M Shi, P Zou, X Y Lu. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt Express, 26, 26700-26712(2018).

    [44] V J Mathews. Adaptive polynomial filters. IEEE Signal Process Mag, 8, 10-26(1991).

    [45] Fehenberger T, Hanik N. Mutual information as a figure of merit for optical fiber systems. arXiv: 1405.2029 (2014).

    Fangchen Hu, Jorge A. Holguin-Lerma, Yuan Mao, Peng Zou, Chao Shen, Tien Khee Ng, Boon S. Ooi, Nan Chi. Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode[J]. Opto-Electronic Advances, 2020, 3(8): 200009-1
    Download Citation