• Photonics Research
  • Vol. 9, Issue 12, 2360 (2021)
Zeng-Quan Yan1、2, Cheng-Qiu Hu1、2, Zhan-Ming Li1、2, Zhong-Yuan Li3, Hang Zheng1、2、5、*, and Xian-Min Jin1、2、4、6、*
Author Affiliations
  • 1Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • 3Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
  • 4TuringQ Co., Ltd., Shanghai 200240, China
  • 5e-mail: hzheng@sjtu.edu.cn
  • 6e-mail: xianmin.jin@sjtu.edu.cn
  • show less
    DOI: 10.1364/PRJ.438275 Cite this Article Set citation alerts
    Zeng-Quan Yan, Cheng-Qiu Hu, Zhan-Ming Li, Zhong-Yuan Li, Hang Zheng, Xian-Min Jin. Underwater photon-inter-correlation optical communication[J]. Photonics Research, 2021, 9(12): 2360 Copy Citation Text show less
    References

    [1] I. F. Akyildiz, D. Pompili, T. Melodia. Challenges for efficient communication in underwater acoustic sensor networks. ACM SIGBED Rev., 1, 3-8(2004).

    [2] M. Stojanovic, J. Preisig. Underwater acoustic communication channels: propagation models and statistical characterization. IEEE Commun. Mag., 47, 84-89(2009).

    [3] M. G. Solonenko, C. D. Mobley. Inherent optical properties of Jerlov water types. Appl. Opt., 54, 5392-5401(2015).

    [4] C. Wang, H.-Y. Yu, Y.-J. Zhu. A long distance underwater visible light communication system with single photon avalanche diode. IEEE Photon. J., 8, 7906311(2016).

    [5] M. Doniec, C. Detweiler, I. Vasilescu, M. Chitre, M. Hoffmann-Kuhnt, D. Rus. Aquaoptical: a lightweight device for high-rate long-range underwater point-to-point communication. Mar. Technol. Soc. J., 44, 55-65(2010).

    [6] M. Doniec, D. Rus. Bidirectional optical communication with aquaoptical II. IEEE International Conference on Communication Systems, 390-394(2010).

    [7] C. Shen, Y. Guo, H. M. Oubei, T. K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, B. S. Ooi. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express, 24, 25502-25509(2016).

    [8] X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, P. Tian. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express, 25, 27937-27947(2017).

    [9] P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, R. Liu. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express, 25, 1193-1201(2017).

    [10] J. Shen, J. Wang, X. Chen, C. Zhang, M. Kong, Z. Tong, J. Xu. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter. Opt. Express, 26, 23565-23571(2018).

    [11] J. Wang, C. Lu, S. Li, Z. Xu. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Opt. Express, 27, 12171-12181(2019).

    [12] S. Hu, L. Mi, T. Zhou, W. Chen. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-ppm. Opt. Express, 26, 21685-21699(2018).

    [13] H. P. Yuen, V. W. Chan. Noise in homodyne and heterodyne detection. Opt. Lett., 8, 177-179(1983).

    [14] G. Abbas, V. Chan, T. Yee. Local-oscillator excess-noise suppression for homodyne and heterodyne detection. Opt. Lett., 8, 419-421(1983).

    [15] R. Fields, D. Kozlowski, H. Yura, R. Wong, J. Wicker, C. Lunde, M. Gregory, B. Wandernoth, F. Heine. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station. International Conference on Space Optical Systems and Applications (ICSOS), 44-53(2011).

    [16] W. Chen, J. Sun, X. Hou, R. Zhu, P. Hou, Y. Yang, M. Gao, L. Lei, K. Xie, M. Huang, R. Li, H. Zang, Y. Wan, E. Dai, Y. Xi, W. Lu, S. Wei, L. Liu, J. Li. 5.12 Gbps optical communication link between LEO satellite and ground station. IEEE International Conference on Space Optical Systems and Applications (ICSOS), 260-263(2017).

    [17] L. Ji, J. Gao, A.-L. Yang, Z. Feng, X.-F. Lin, Z.-G. Li, X.-M. Jin. Towards quantum communications in free-space seawater. Opt. Express, 25, 19795-19806(2017).

    [18] C.-Q. Hu, Z.-Q. Yan, J. Gao, Z.-Q. Jiao, Z.-M. Li, W.-G. Shen, Y. Chen, R.-J. Ren, L.-F. Qiao, A.-L. Yang, H. Tang, X.-M. Jin. Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication. Photon. Res., 7, A40-A44(2019).

    [19] C.-Q. Hu, Z.-Q. Yan, J. Gao, Z.-M. Li, H. Zhou, J.-P. Dou, X.-M. Jin. Decoy-state quantum key distribution over a long-distance high-loss air-water channel. Phys. Rev. Appl., 15, 024060(2021).

    [20] Z. Feng, S. Li, Z. Xu. Experimental underwater quantum key distribution. Opt. Express, 29, 8725-8736(2021).

    [21] Y. Chen, W.-G. Shen, Z.-M. Li, C.-Q. Hu, Z.-Q. Yan, Z.-Q. Jiao, J. Gao, M.-M. Cao, K. Sun, X.-M. Jin. Underwater transmission of high-dimensional twisted photons over 55 meters. PhotoniX, 1, 5(2020).

    [22] F. Hufnagel, A. Sit, F. Bouchard, Y. Zhang, D. England, K. Heshami, B. J. Sussman, E. Karimi. Investigation of underwater quantum channels in a 30 meter flume tank using structured photons. New J. Phys., 22, 093074(2020).

    [23] H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, M. Toyoshima. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photonics, 11, 502-508(2017).

    [24] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, M. T. Hummon. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [25] N. Ashby. Relativity in the global positioning system. Living Rev. Relativity, 6, 1(2003).

    [26] L. Cacciapuoti, C. Salomon. Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Spec. Top., 172, 57-68(2009).

    [27] H. Müller, A. Peters, S. Chu. A precision measurement of the gravitational redshift by the interference of matter waves. Nature, 463, 926-929(2010).

    [28] Z.-Q. Yan, C.-Q. Hu, Z.-M. Li, Z.-Y. Li, H. Zheng, X.-M. Jin. Photon-inter-correlation optical communication(2021).

    [29] X. Ma, B. Qi, Y. Zhao, H.-K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 72, 012326(2005).

    [30] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [31] R. G. Gallager. Stochastic Processes: Theory for Applications(2013).

    [32] A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, G. S. Buller. Underwater depth imaging using time-correlated single-photon counting. Opt. Express, 23, 33911-33926(2015).

    [33] A. Maccarone, F. M. D. Rocca, A. McCarthy, R. Henderson, G. S. Buller. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array. Opt. Express, 27, 28437-28456(2019).

    Zeng-Quan Yan, Cheng-Qiu Hu, Zhan-Ming Li, Zhong-Yuan Li, Hang Zheng, Xian-Min Jin. Underwater photon-inter-correlation optical communication[J]. Photonics Research, 2021, 9(12): 2360
    Download Citation