• Photonics Research
  • Vol. 9, Issue 4, 574 (2021)
Zhiwei Guo1、2、*, Tengzhou Zhang1, Juan Song1, Haitao Jiang1, and Hong Chen1、3、*
Author Affiliations
  • 1MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
  • 2e-mail: 2014guozhiwei@tongji.edu.cn
  • 3e-mail: hongchen@tongji.edu.cn
  • show less
    DOI: 10.1364/PRJ.413873 Cite this Article Set citation alerts
    Zhiwei Guo, Tengzhou Zhang, Juan Song, Haitao Jiang, Hong Chen. Sensitivity of topological edge states in a non-Hermitian dimer chain[J]. Photonics Research, 2021, 9(4): 574 Copy Citation Text show less
    References

    [1] D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 1959-2007(2010).

    [2] M. Z. Hasan, C. L. Kane. Topological insulators. Rev. Mod. Phys., 82, 3045-3067(2010).

    [3] X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 83, 1057-1110(2011).

    [4] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [5] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [6] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [7] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, O. Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett., 109, 106402(2012).

    [8] M. A. Bandres, M. C. Rechtsman, M. Segev. Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X, 6, 011016(2016).

    [9] Z. W. Guo, H. T. Jiang, Y. Sun, Y. H. Li, H. Chen. Asymmetric topological edge states in a quasiperiodic Harper chain composed of split-ring resonators. Opt. Lett., 43, 5142-5145(2018).

    [10] S. Longhi. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 122, 237601(2019).

    [11] D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, I. C. Fulga. Topological phases without crystalline counterparts. Phys. Rev. Lett., 123, 196401(2019).

    [12] W. P. Su, J. R. Schrieffer, A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42, 1698-1701(1979).

    [13] N. Malkova, I. Hromada, X. Wang, G. Bryant, Z. Chen. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett., 34, 1633-1635(2009).

    [14] J. Jiang, Z. W. Guo, Y. Q. Ding, Y. Sun, Y. H. Li, H. T. Jiang, H. Chen. Experimental demonstration of the robust edge states in a split-ring-resonator chain. Opt. Express, 26, 12891-12902(2018).

    [15] J. Jiang, J. Ren, Z. W. Guo, W. W. Zhu, Y. Long, H. T. Jiang, H. Chen. Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators. Phys. Rev. B, 101, 165427(2020).

    [16] Y. Hadad, J. C. Soric, A. B. Khanikaev, A. Alù. Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 1, 178-182(2018).

    [17] D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, Y. S. Kivshar. Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 121, 163901(2018).

    [18] Y. Wang, L. J. Lang, C. H. Lee, B. L. Zhang, Y. D. Chong. Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 10, 1102(2019).

    [19] S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, Y. Kivshar. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol., 14, 126-130(2019).

    [20] D. Smirnova, D. Leykam, Y. D. Chong, Y. Kivshar. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    [21] S. Xia, D. Jukić, N. Wang, D. Smirnova, L. Smirnov, L. Tang, D. Song, A. Szameit, D. Leykam, J. Xu, Z. Chen, H. Buljan. Nontrivial coupling of light into a defect: the interplay of nonlinearity and topology. Light Sci. Appl., 9, 147(2020).

    [22] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, S. Iwamoto. Active topological photonics. Nanophotonics, 9, 547-567(2020).

    [23] H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R. El-Ganainy, H. Schomerus, L. Feng. Topological hybrid silicon microlasers. Nat. Commun., 9, 981(2018).

    [24] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, M. Khajavikhan. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett., 120, 113901(2018).

    [25] Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, Y. Arakawa. Topological photonic crystal nanocavity laser. Commun. Phys., 1, 86(2018).

    [26] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).

    [27] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017).

    [28] K. Özdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [29] M. A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, 7709(2019).

    [30] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).

    [31] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).

    [32] H. Xu, D. Mason, L. Jiang, J. G. E. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).

    [33] S. Assawaworrarit, X. F. Yu, S. H. Fan. Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 546, 387-390(2017).

    [34] H.-Z. Chen, T. Liu, H.-Y. Luan, R.-J. Liu, X.-Y. Wang, X.-F. Zhu, Y.-B. Li, Z.-M. Gu, S.-J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu, R.-M. Ma. Revealing the missing dimension at an exceptional point. Nat. Phys., 16, 571-578(2020).

    [35] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).

    [36] A. U. Hassan, B. Zhen, M. Soljačić, M. Khajavikhan, D. N. Christodoulides. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett., 118, 093002(2017).

    [37] X. L. Zhang, S. B. Wang, B. Hou, C. T. Chan. Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point. Phys. Rev. X, 8, 021066(2018).

    [38] Q. J. Liu, S. Y. Li, B. Wang, S. L. Ke, C. Z. Qin, K. Wang, W. W. Liu, D. S. Gao, P. Berini, P. X. Lu. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett., 124, 153903(2020).

    [39] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [40] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [41] W. J. Chen, K. Özdemir, G. M. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [42] P. Y. Chen, M. Sakhdari, M. Hajizadegan, Q. S. Cui, M.-C. Cheng, R. El-Ganainy, A. Alù. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nat. Electron., 1, 297-304(2018).

    [43] S. B. Wang, B. Hou, W. X. Lu, Y. T. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 10, 832(2018).

    [44] K. Ding, G. C. Ma, Z. Q. Zhang, C. T. Chan. Exceptional demonstration of an anisotropic exceptional point. Phys. Rev. Lett., 121, 085702(2018).

    [45] Z. Dong, Z. P. Li, F. Yang, C.-W. Qiu, J. S. Ho. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron., 2, 335-342(2019).

    [46] Q. Zhong, J. Ren, M. Khajavikhan, D. N. Christodoulides, K. Özdemir, R. El-Ganainy. Sensing with exceptional surfaces in order to combine sensitivity with robustness. Phys. Rev. Lett., 122, 153902(2019).

    [47] Z. C. Xiao, H. N. Li, T. Kottos, A. Alù. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 123, 213901(2019).

    [48] Y. J. Zhang, H. Kwon, M.-A. Miri, E. Kallos, H. Cano-Garcia, M. S. Tong, A. Alù. Noninvasive glucose sensor based on parity-time symmetry. Phys. Rev. Appl., 11, 044049(2019).

    [49] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T. Lepetit, Y.-H. Lo, B. Kanté. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).

    [50] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, A. Szameit. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett., 115, 040402(2015).

    [51] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, H. Schomerus. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun., 6, 6710(2015).

    [52] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, A. Szameit. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater., 16, 433-438(2017).

    [53] S. Y. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).

    [54] B. K. Qi, L. X. Zhang, L. Ge. “Defect states emerging from a non-Hermitian flatband of photonic zero modes. Phys. Rev. Lett., 120, 093901(2018).

    [55] K. Takata, M. Notomi. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett., 121, 213902(2018).

    [56] S. Longhi, L. Feng. Non-Hermitian multimode interference. Opt. Lett., 45, 1962-1965(2020).

    [57] S. Lieu. Topological phases in the non-Hermitian Su–Schrieffer–Heeger model. Phys. Rev. B, 97, 045106(2018).

    [58] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 8, 031079(2018).

    [59] A. Cerjan, M. Xiao, L. Yuan, S. Fan. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges. Phys. Rev. B, 97, 075128(2018).

    [60] S. Liu, S. J. Ma, C. Yang, L. Zhang, W. L. Gao, Y. J. Xiang, T. J. Cui, S. Zhang. Gain- and loss-induced topological insulating phase in a non-Hermitian electrical circuit. Phys. Rev. Appl., 13, 014047(2020).

    [61] Z. W. Guo, H. T. Jiang, Y. H. Li, H. Chen, G. S. Agarwal. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 26, 627-641(2018).

    [62] Z. W. Guo, H. T. Jiang, H. Chen. Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys., 127, 071101(2020).

    [63] W. Gao, X. Y. Hu, C. Li, J. H. Yang, Z. Chai, J. Y. Xie, Q. H. Gong. Fano-resonance in one-dimensional topological photonic crystal heterostructure. Opt. Express, 26, 8634-8644(2018).

    [64] F. Zangeneh-Nejad, R. Fleury. Topological Fano resonances. Phys. Rev. Lett., 122, 014301(2019).

    [65] Q. S. Huang, Z. W. Guo, J. T. Feng, C. Y. Yu, H. T. Jiang, Z. Zhang, Z. S. Wang, H. Chen. Observation of a topological edge state in the X-ray band. Laser Photon. Rev., 13, 1800339(2019).

    [66] W. Song, W. Z. Sun, C. Chen, Q. H. Song, S. M. Xiao, S. N. Zhu, T. Li. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett., 123, 165701(2019).

    [67] W. G. Song, W. Z. Sun, C. Chen, Q. H. Song, S. M. Xiao, S. N. Zhu, T. Li. Robust and broadband optical coupling by topological waveguide arrays. Laser Photon. Rev., 14, 1900193(2020).

    [68] J. Ningyuan, C. Owens, A. Sommer, D. Schuster, J. Simon. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 5, 021031(2015).

    [69] V. V. Albert, L. I. Glazman, L. Jiang. Topological properties of linear circuit lattices. Phys. Rev. Lett., 114, 173902(2015).

    [70] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R. Thomale. Topolectrical-circuit realization of topological corner modes. Nat. Phys., 14, 925-929(2018).

    [71] Y. Li, Y. Sun, W. W. Zhu, Z. W. Guo, J. Jiang, T. Kariyado, H. Chen, X. Hu. Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum. Nat. Commun., 9, 4598(2018).

    [72] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, R. Thomale. Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 16, 747-750(2020).

    [73] X. F. Zhang, K. Ding, X. J. Zhou, J. Xu, D. F. Jin. Experimental observation of an exceptional surface in synthetic dimension with magnon polaritons. Phys. Rev. Lett., 123, 237202(2019).

    [74] F. X. Zhang, Y. M. Feng, X. F. Chen, L. Ge, W. J. Wan. Synthetic anti-PT symmetry in a single microcavity. Phys. Rev. Lett., 124, 053901(2020).

    [75] J. Feis, C. J. Stevens, E. Shamonina. Wireless power transfer through asymmetric topological edge states in diatomic chains of coupled meta-atoms. Appl. Phys. Lett., 117, 134106(2020).

    [76] L. Zhang, Y. H. Yang, Z. Jiang, Q. L. Chen, Q. H. Yan, Z. Y. Wu, B. L. Zhang, J. T. Huangfu, H. S. Chen. Topological wireless power transfer(2020).

    [77] J. Song, F. Q. Yang, Z. W. Guo, Y. Q. Chen, H. T. Jiang, Y. H. Li, H. Chen. One-dimensional topological quasiperiodic chain for directional wireless power transfer(2020).

    [78] J. Song, F. Q. Yang, Z. W. Guo, X. Wu, K. J. Zhu, J. Jiang, Y. Sun, Y. H. Li, H. T. Jiang, H. Chen. Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 15, 014009(2021).

    [79] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H. Lee, A. Bilušić, R. Thomale, T. Neupert. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2, 023265(2020).

    [80] S. Weidemann, P. Kremer, T. Helbig, T. Hofmann, A. Stegmaier, M. Greiter, R. Thomale, A. Szameit. Topological funneling of light. Science, 368, 311-314(2020).

    [81] V. Peano, M. Houde, F. Marquardt, A. A. Clerk. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X, 6, 041026(2016).

    [82] J. Ran, Y. W. Zhang, X. D. Chen, H. Chen. Frequency mixer based on Doppler effect. IEEE Microw. Wireless Compon. Lett., 28, 43-45(2018).

    [83] Y. Sun, W. Tan, H. Q. Li, J. Li, H. Chen. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 112, 143903(2014).

    CLP Journals

    [1] Hong Jiang, Weidong Zhang, Guowei Lu, Lulu Ye, Hai Lin, Jinglin Tang, Zhaohang Xue, Zheng Li, Haitan Xu, Qihuang Gong. Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system[J]. Photonics Research, 2022, 10(2): 557

    [2] Yin Huang, Yuecheng Shen, Georgios Veronis. Topological edge states at singular points in non-Hermitian plasmonic systems[J]. Photonics Research, 2022, 10(3): 747

    Zhiwei Guo, Tengzhou Zhang, Juan Song, Haitao Jiang, Hong Chen. Sensitivity of topological edge states in a non-Hermitian dimer chain[J]. Photonics Research, 2021, 9(4): 574
    Download Citation