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Photonic topological edge states in one-dimensional dimer chains have long been thought to be robust to struc-
tural perturbations by mapping the topological Su–Schrieffer–Heeger model of a solid-state system. However, the
edge states at the two ends of a finite topological dimer chain will interact as a result of near-field coupling. This
leads to deviation from topological protection by the chiral symmetry from the exact zero energy, weakening the
robustness of the topological edge state. With the aid of non-Hermitian physics, the splitting frequencies of edge
states can be degenerated again, with topological protection recovered by altering the gain or loss strength of the
structure. This point of coalescence is known as the exceptional point (EP). The intriguing physical properties of
EPs in topological structures give rise to many fascinating and counterintuitive phenomena. In this work, based
on a finite non-Hermitian dimer chain composed of ultra-subwavelength resonators, we propose theoretically and
verify experimentally that the sensitivity of topological edge states is greatly affected when the system passes
through the EP. Using the EP of a non-Hermitian dimer chain, we realize a new sensor that is sensitive to per-
turbation of on-site frequency at the end of the structure and yet topologically protected from internal pertur-
bation of site-to-site couplings. Our demonstration of a non-Hermitian topological structure with an EP paves the
way for the development of novel sensors that are not sensitive to internal manufacturing errors but are highly
sensitive to changes in the external environment. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.413873

1. INTRODUCTION

Topological insulators, an interesting research topic in physics,
have greatly improved the understanding of the classification of
states in condensed matter physics. The fully occupied elec-
tronic band structure has the topological characteristics identi-
fied by the topological invariants [1]. Topological insulators
have also opened up a new research stream in the development
of new semiconductor devices to be used in quantum comput-
ing, high-fidelity quantum communication, and so on [2,3].
Inspired by the topological properties of electronic band struc-
tures, scientists designed a photonic counterpart and observed
the charming photonic edge states in the artificial photonic
structures [4–6]. It is of great scientific significance to use top-
ology to control the motion of photons, and this unique re-
search has been extended to quasiperiodic systems [7–11].
Photonic topological edge states can overcome the scattering
losses caused by structural defects and disorders and realize
topologically protected photonic devices, such as unidirectional
waveguides and single-mode lasers [4–6].

As one of the simplest topological structures, the one-
dimensional (1D) dimer chain has been widely used in the
study of photonic topological excitation. In this structure,
the topological invariant can be directly identified by compar-
ing the relative magnitude of intra-cell and inter-cell coupling
coefficients [12]. Notably, in 2009, Malkova et al. experimen-
tally revealed the linear Shockley-like surface states in an opti-
cally induced semi-infinite photonic superlattice, and it is the
first, to the best of our knowledge, demonstration of 1D topo-
logical states in photonics [13]. Recently, the edge states will
appear symmetrically at two ends of the finite topological chain
[14], and the topological order—winding number—will be di-
rectly observable in the microwave regime [15]. At present, re-
search on the advantages of 1D dimer chains has been extended
to nonlinear [16–21] and active [22–25] systems. However,
non-Hermitian topological photonics is also a very interesting
research topic in topological physics. Advances in the field of
non-Hermitian photonics based on parity–time (PT) symmetry
have greatly improved the ability to design new photonic
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topological insulators in previously inaccessible ways [26,27].
In general, the eigenvalues of open optical non-Hermitian
systems are generally complex. However, the PT-symmetric
structure with real eigenvalues belongs to a very special non-
Hermitian system. The most noticeable feature of a non-
Hermitian system is that there are degenerate points in the
Riemannian surface of the parameter space, where eigenvalues
and corresponding eigenvectors simultaneously coalesce
[28,29]. These non-Hermitian degeneracies, are also called ex-
ceptional points (EPs). Remarkably, in 2009, Guo et al. firstly
highlighted the ability of PT-symmetric systems to guide light
and then uncover the interesting loss-induced transparency due
to an EP in a passive PT-symmetric experiment performed with
coupled passive waveguides [30]. In addition, EPs have turned
out to be the origin of many counterintuitive phenomena, such
as band merging [31], dynamic wireless power transfer [32,33],
the chirality-reversal phenomenon [34], and mode transfer
[35–38]. EPs provide a new way to design new highly sensitive
sensors beyond the linear response, and performance can be
optimized as the order of the EPs increases [39–49]. Non-
Hermitian topological structures contain new physical phe-
nomena not usually found in normal Hermitian topological
structures [50–60]. To date, the unique topological order
[52,55], phase transition [50,57,58,60], and edge state [51,52,
54,56] of the non-Hermitian 1D dimer chain have been stud-
ied. For example, the non-Bloch winding number as the topo-
logical invariant has been theoretically proposed [53], and
topological protection of the edge states has been demonstrated
experimentally [52]. Topological non-Hermitian systems pro-
vide an effective avenue for studying the intriguing properties
of topological photonics involving EPs and developing new
functional devices.

Near-field mode coupling is a fundamental physical effect
that plays an important role in controlling electromagnetic
waves [61,62]. Researchers who have studied the near-field
coupling of topological edge states have found many interesting
phenomena, such as robust topological Fano resonance [63,64]
and Rabi splitting [65]. Specifically, in a finite non-Hermitian
dimer waveguide array, the coupling effect of edge states leads
to deviation from the topological zero mode and thus weakens
the robustness of the edge states [66,67]. In general, mode split-
ting induced by near-field coupling can be eliminated by in-
creasing the length of the chain [61]. To recover topological
protection, the coupling of the two edge states must be signifi-
cantly reduced by increasing the chain length, which will
cause the splitting edge state modes to return to zero energy.
However, in a non-Hermitian system, the splitting frequencies
can be degenerated again at the EPs by directly altering the gain
or loss strength while keeping the length of the chain un-
changed [66,67]. Although the effects of near-field coupling
on the robustness of topological edge states have been con-
firmed qualitatively from field distributions [66,67], the behav-
ior of novel EPs in non-Hermitian topological systems has not
been reported. Topological edge states are generally thought to
be robust to structural perturbations, as they result from non-
local response based on the bulk-boundary correspondence. In
contrast, the EP is often used to achieve highly sensitive sensors
and is sensitive to slight variation in the environment. Thus, a

question naturally arises: can topological edge states be used to
design new highly sensitive sensors by combining EPs?

Recently, topological circuit has been widely used as a ver-
satile platform to study the abundant topological physics
[68–72]. In this work, we study experimentally the properties
of the EP in a finite non-Hermitian topological circuit-based
dimer chain. The coupling between two edge states is pre-
sented, which is particularly relevant to the realization of
second-order EPs. By adding loss and gain to both ends of
the dimer chain, we can obtain the non-Hermitian topological
chain that satisfies PT symmetry and then observe the EP by
increasing the loss or gain of the system. Moreover, we also
study the sensitivity of topological edge states to disturbances
in the environment before and after the EP. As a result, a new
highly sensitive sensor with topological protection is realized
based on the EP of topological edge states. In sharp contrast to
traditional sensors, this new sensor based on non-Hermitian
and topological characteristics has unique advantages. It is im-
mune from disturbances of site-to-site couplings in the internal
part of the structure and is very sensitive to perturbation of on-
site frequency at the end of the structure. By combining non-
Hermitian systems with topology photonics, we design a sensor
that has both the robustness of topology and the sensitivity of
EPs. In addition, an even more sensitive topological sensor
could be designed in the future considering the high-order
EPs realized by the synthetic dimension [73,74]. Our findings
not only present a novel photonic sensor with topological pro-
tection but also may be very useful for a variety of applications
with non-Hermitian properties, including wireless power trans-
fer [75–78], energy harvesting [79,80], and antennas [81].

2. EPs OF EDGE STATES IN A FINITE
NON-HERMITIAN DIMER CHAIN

We consider a finite non-Hermitian topological dimer chain
consisting of subwavelength resonators. The full circuit model
of the composite resonator is shown in Fig. 1(a). The resonator
is composed of a fundamental inductance-capacitance (LC) res-
onator, a negative resistance convertor (NIC) component, and a
tunable resistor. Specifically, the LC resonator is constructed
with a double-side winding structure and top and bottom layers
connected by metal vias, as shown in Fig. 1(b). The composite
resonator is fabricated on a commercial printed-circuit sub-
strate, FR-4 (εr � 4.75, tan δ � 0.03), with a thickness of
h � 1.6 mm. The width and gap of the metal lines are
w � 1.12 mm and g � 0.39 mm, respectively. The resonance
frequency of the LC resonator is ω0 � 6.15 MHz, with
L0 � 1.12 μH and C0 � 600 pF. The resonance frequency
can be flexibly tuned by adding different lumped capacitors
into the welding position, which is marked by the green rec-
tangles in Fig. 1(b). At the resonance frequency, the electro-
magnetic field is mostly confined within the resonators;
thus, the near-field coupling of resonators can be treated as
the tight-binding model. In this work, modulation of gain
and loss in the composite resonator is realized by the NIC com-
ponent and tunable resistor, respectively. A metal-oxide-semi-
conductor field-effect transistor (MOSFET) is used to provide
the effective gain. The circuit model and the connection sche-
matic of the NIC component are shown in Figs. 1(c) and 1(d),
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respectively. The source of two MOSFETs is in the same
ground, whereas their gates are connected to the drain of the
opposite transistor. This is equivalent to a voltage-controlled
current source whose input and output ports are inversely par-
allel, thus playing a role in negative resistance. RF chokes
(LR � 15 μH) play a role in constant current while avoiding
the influence of the alternating current (AC) signal on the di-
rect current (DC) stabilized voltage source [82].

The tunable gain and loss in the composite resonator can be
realized by changing the external bias voltage on the NIC com-
ponent and the resistance of the tunable resistor, respectively.
First, we decrease the resistance of the tunable resistor gradually
without applying the external bias voltage. From the measured

reflection spectrum in Fig. 2(a), it can be seen that with the
decrease in resistance, the minimum value of the reflection
spectrum increases gradually, and the half-height and width
of the spectrum become wider. This means that the effective
loss is introduced into the resonator when the resistor is added
to the circuit. The loss of the system is inversely proportional to
the value of the shunted resistor. Next, the external bias voltage
is applied to the NIC component while the resistance is fixed at
R � 2.8 kΩ. The corresponding reflection spectrum of the
composite resistor is shown in Fig. 2(b). Owing to the effects
of parasitic capacitance in the NIC component, the resonance
frequency of the composite resonator shifts slightly. Overall, as
the bias voltage increases, the minimum value of the reflection
spectrum decreases gradually, and the half-height and width
of the spectrum become narrower, as shown in Fig. 2(b).
Therefore, the effective gain is introduced into the resonator
when the bias voltage is applied to the circuit. From Fig. 2,
we can see that both the loss and the gain can be flexibly con-
trolled in the composite circuit-based resonator.

The 1D non-Hermitian topological dimer chain is shown
schematically in Fig. 3(a). This chain involves ten resonators:
two on either end with gain and loss separated by eight inner
neutral resonators. To illustrate this more clearly, we show the
amplifying, neutral, and lossy resonators in pink, green, and
blue, respectively. The topological order of the 1D dimer chain
is related to the relative magnitude of intra-cell (κ1) and inter-
cell (κ2) coupling coefficients [14,15]. Specifically, the Zak
phases of the topological structure (κ1 < κ2) and trivial struc-
ture (κ1 > κ2) are π and 0, respectively. Because of the bulk-
boundary correspondence, the edge states will appear symmet-
rically at two ends of the chain for the finite topological struc-
ture. However, they will interact with each other as a result of
the near-field coupling. This will lead to deviation from the
topological zero mode protected by the chiral symmetry from
the exact zero energy, weakening the robustness of the topologi-
cal edge state. The magnitudes of intra-cell and inter-cell cou-
pling coefficients are κ1 � 0.38 MHz and κ2 � 0.45 MHz,
respectively. Two non-resonant coils are placed at the left
and right ends of the dimer chain as the transmitter and
receiver, respectively. For a continuous harmonic wave input

Fig. 1. Composite resonator with tunable gain and loss designed in
the current study. (a) Effective circuit model of the composite resona-
tor, composed of a simple LC resonator, a negative resistance convertor
(NIC) component, and a tunable resistor. (b) Details of the composite
resonator, where the gold and blue structures indicate the top and bot-
tom copper layers, respectively. Here, d 1 � 46.2 mm, d 2 � 48 mm,
and w � 1.12 mm; the thickness of the substrate is h � 1.6 mm. The
lumped circuit elements and vias are marked by the green rectangles
and red dots, respectively. (c) Circuit model of the NIC component.
The effective gain is tuned by the external direct current (DC) voltage
source. (d) Schematic of the realization of the NIC component based
on RF chokes and metal-oxide-semiconductor field-effect transistors
(MOSFETs).

Fig. 2. Measured reflection spectrum of the composite resonator. (a) The reflection spectrum from changing the resistance without the external
bias voltage. The resonant frequency, which is marked by the pink dashed line, is almost unchanged. (b) Similar to (a), but the external voltage
changes while the resistance is fixed at R � 2.8 kΩ. The slight frequency shift of 0.086 MHz is marked by gray shading.
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s1� � S1�e−iωt , the dynamics of the multi-resonator system
can be described by the coupled mode equations as [83]

da1
dt

� −iω 0
Ga1 − iκ1a2 �

ffiffiffiffiffi
2γ

p
s�,

dan
dt

� −iωN an − iκ1an−1 − iκ2an�1, n � 2, 4, 6, 8,

dam
dt

� −iωN am − iκ2am−1 − iκ1am�1, m � 3, 5, 7, 9,

da10
dt

� −iωLa10 − iκ1a9, (1)

where ω 0
G � ω0 � ig 0G − iΓ, ωN � ω0 − iΓ, and

ωL � ω0 − ig 0L − iΓ − iγ. After considering the coupling rate
γ � 0.06 between the resonant on the end of the dimer chain
and the non-resonant coil, gG � g 0G � γ and gL � g 0L � γ de-
note the effective gain and loss of the resonators, respectively.
jajj2 �j � 1, 2,…, 10� denotes the energy stored in 10 resona-
tors. Considering the condition of the zero return wave, the
associated 10 × 10 non-Hermitian Hamiltonian can be written
as follows [83]:

H �

0
BBBBBBBBBBBBB@

ωG κ1 0 0 0 0 0 0 0 0
κ1 ωN κ2 0 0 0 0 0 0 0
0 κ2 ωN κ1 0 0 0 0 0 0
0 0 κ1 ωN κ2 0 0 0 0 0
0 0 0 κ2 ωN κ1 0 0 0 0
0 0 0 0 κ1 ωN κ2 0 0 0
0 0 0 0 0 κ2 ωN κ1 0 0
0 0 0 0 0 0 κ1 ωN κ2 0
0 0 0 0 0 0 0 κ2 ωN κ1
0 0 0 0 0 0 0 0 κ1 ωL

1
CCCCCCCCCCCCCA

,

(2)

where ωG � ω 0
G � iγ. Without considering the loss term

Γ � 0.03 MHz in the neutral resonator and gG � gL, the
non-Hermitian chain described by Eq. (2) can be seen as an
ideal PT system. When a small frequency perturbation ε affects
the lossy resonator on the right of the dimer chain, the term ωL
becomes ωL � ω0 � ε − igL − iΓ. Without the loss of general-
ity, we first establish an equivalent ideal PT system with bal-
anced loss and gain on two ends of the chain and then
obtain the EP by increasing the loss. To avoid the influence
of vibration from the NIC component on the experiment when
the external bias voltage is large, we select a suitable voltage on

Fig. 3. 1D non-Hermitian topological dimer chain. (a) Schematic of a topological dimer chain with 10 resonators. Effective loss and gain are
added into the left and right resonators, respectively. (b) The real eigenfrequencies of the finite chain as a function of parameter gL. As gL increases,
the splitting edge states gradually coalesce in the EP, which is marked by the black arrow. (c) The enlarged eigenfrequencies of two edge states as a
function of parameter gL and frequency detuning ε. (d), (e) Normalized wave functions of two splitting edge states (ω� and ω−).
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the gain resonator ofU � 1.3 V. When the shunted resistor of
the lossy resonator is with R � 10 kΩ, we can establish an
ideal PT system with gG � gL � 0.18 MHz. Then, we retain
gG � 0.18 MHz and increase gL to realize the EP. Using
Eq. (2), we calculate the real eigenfrequencies dependent on
parameter gL without frequency detuning (ε � 0), as shown
in Fig. 3(b). It is important to note that the topological edge
states can be identified in the band gap. The EP in this non-
Hermitian system without perturbations is marked by the black
arrow. To see clearly the evolution of eigenfrequencies on the
parameter, we show the enlarged eigenfrequencies of two edge
states as a function of parameter gL and frequency detuning ε in
Fig. 3(c). As gL increases, the two splitting edge states gradually
coalesce in the EP. Moreover, we take the case of
gL � 0.18 MHz [marked by the red dashed line in Fig. 3(b)]
as an example; the two edge states are represented by ω� and
ω−. The normalized wave functions of the two edge states ω�
and ω− are shown in Figs. 3(d) and 3(e), respectively. From
Fig. 3, we can see that the near-field coupling between the
two edge states is a global response. Specifically, symmetric
and asymmetric distributions are realized by the edge states
ω� and ω−, which means that the coupling sign between

the two edge states is negative, although the coupling sign be-
tween different resonators is positive [14,15].

3. EXPERIMENTAL OBSERVATIONS OF THE
SENSITIVITY OF TOPOLOGICAL EDGE STATES
AT DIFFERENT PHASES AROUND THE EP

To demonstrate experimentally the EP of the edge states, we
construct a finite non-Hermitian dimer chain based on the
aforementioned theoretical model. The experimental setup is
shown in Fig. 4(a). The dimer chain is composed of 10 reso-
nators. The amplifying, neutral, and lossy resonators are
marked, respectively, by G, N, and L. This non-Hermitian
topological dimer chain is put on a PMMA substrate. The
structure parameters of the resonators are the same as those
of the composite resonator in Fig. 1. The input port is placed
on the left side of the chain to measure the reflection spectrum
of the chain. We study the coupling modulation of edge states
by tuning the loss in the right lossy resonator, while the gain in
the amplifying resonator keeps a suitable value of gG �
0.18 MHz, as shown in Fig. 3. First, we control the gain
and loss, balancing gG � gL � 0.18 MHz, by simultaneously

Fig. 4. Measured reflection spectrum of the 1D non-Hermitian dimer chain. (a) Photo of the non-Hermitian topological dimer chain. The
sample is put on a PMMA substrate with a thickness hs � 1 cm. (b) Measured reflection spectrum as the dissipative loss of the lossy resonator,
which is controlled by the tunable resistor at the right end of the chain, increases. Dots denote the frequencies of the edge states. Resistance is given
on a logarithmic scale.

578 Vol. 9, No. 4 / April 2021 / Photonics Research Research Article



tuning the voltage U � 1.3 V and resistance R � 10 kΩ for
the gain and lossy resonators, respectively. Because of the near-
field coupling between two edge states, two splitting edge states
will have different eigenfrequencies. The corresponding reflec-
tion spectrum is marked A in Fig. 4(b). Then, we gradually
increase the loss in the lossy resonator and find the point of
coalescence of the eigenfrequencies, which corresponds to the
EP of the edge states in the non-Hermitian dimer chain. For
the EP, the external bias voltage on the amplifying resonator is
unchanged at U � 1.3 V (gG � 0.18 MHz), whereas the re-
sistor of the lossy resonator is with R � 2.23 kΩ
(gL � 0.21 MHz). The reflectance spectrum corresponding
to the EP is marked by B in Fig. 4(b). Next, for greater loss
(gL > 0.21 MHz) in the lossy resonator due to further decreas-
ing the value of the resistor, the edge states always degenerate.
For example, for the lossy resonator with R � 0.67 kΩ
(gL � 0.23 MHz), the reflectance spectrum of the topological
chain is marked C in Fig. 4(b). Therefore, we observe the phase
transition process associated with the EP by tuning the loss of
the lossy resonator, which is easily realized by tuning the resis-
tance of the resistor.

To further explore the intriguing properties of the EP in the
non-Hermitian topological system, we study the sensitivity of
the edge states in three different regimes around the EP. The
robustness of edge states in a degenerating regime was recently
demonstrated experimentally in a waveguide array with passive
PT symmetry [66]. However, the EP property of edge states in
non-Hermitian systems has not been considered. Here, we
quantitatively study the sensitivity of topological edge states.
In particular, the EP for this system is expected to realize a
new type of sensor. Within the context of coupled mode theory,
the effective second-order non-Hermitian system realized by
the two edge states in the topological dimer chain can be de-
scribed by the effective Hamiltonian [78],

Hee �
�
ω0 � iγa κee

κee ω0 − iγb

�
, (3)

where κee denotes the effective coupling coefficient of two edge
states. γa and γb are the gain and loss of the left and right states,
respectively. The eigenvalues of Eq. (3) are

ωe− �
1

2
�iγa − iγb −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�γa � γb�2 � 4κ2ee

p
� 2ω0�,

ωe� � 1

2
�iγa − iγb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�γa � γb�2 � 4κ2ee

p
� 2ω0�: (4)

Once γa � γb � 2κee , two eigenstates coalesce, ωe− � ωe�,
which corresponds to the EP. When a small perturbation ε af-
fects the edge state on the right end of the chain, the effective
Hamiltonian can be written as

H 0
ee �

�
ω0 � iγa κee

κee ω0 − iγb � ε

�
: (5)

The eigenvalues of Eq. (5) are

ω 0
e− �

1

2
�iγa − iγb � ε −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�γa � γb � iε�2 � 4κ2ee

p

� 2ω0�,ω 0
e�

� 1

2
�iγa − iγb � ε�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�γa � γb � iε�2 � 4κ2ee

p
� 2ω0�:

(6)

Next, we study the sensitivity of the edge states in three differ-
ent regimes around the EP. Considering the case γa � 0.5κee ,
γb � 0.5κee in the splitting region, the series expansion of
δω � ω 0

e� − ω 0
e− can be found as δω ∼ ε. Therefore, the re-

sponse of edge states to the on-site frequency perturbation in
the splitting region is linear. Similarly, considering γa � 0.5κee ,
γb � 2.5κee in the degenerating region, the series expansion of
the frequency splitting of edge states can also be found as
δω ∼ ε. However, for the EP (γa � 0.5κee , γb � 1.5κee), the
series expansion of the frequency splitting of edge states can
be found as δω ∼

ffiffiffi
ε

p
, confirming the square-root behavior

for small perturbations. Comparing the results of the edge states
in the three regions, we can find that the edge states are more
sensitive to the on-site frequency perturbation in EP than in the
splitting and degeneracy regions. In addition, due to the in-
crease of the incoherence effect, the asymmetric edge states
in the degenerate region keep good localization along the left
boundary of the dimer [76]; thus, the topological edge states in
the degenerate region have stronger robustness to the pertur-
bation on the right end of the chain than those in the splitting
region.

In the experiment, by changing the loaded lumped capaci-
tor, we add a small frequency perturbation ε in the lossy res-
onator. The logarithmic plot of the relation between the

Fig. 5. Measured frequency splitting of edge states on frequency
detuning of the right resonator, which is controlled by the loaded
capacitors. The results are given on a logarithmic scale. The green
circles, blue triangles, and pink stars indicate results from the EP, de-
generating region, and splitting region, respectively. Green, pink, and
blue dashed lines with slopes of 1/2, 1, and 1, respectively, are dis-
played for reference.
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frequency shift of the edge states δω and the capacitance per-
turbation δC is shown in Fig. 5. The EP sensor, marked by B in
Fig. 4(b), realized by the edge states exhibits a slope of 1/2 for a
small perturbation; the square roots are shown by the green
circles in Fig. 5. On one side of the EP, marked by A in
Fig. 4(b), the non-Hermitian chain belongs to the splitting re-
gion with little loss. The corresponding designed sensor realized
by the edge states exhibits a normal slope of one for a small
perturbation, which is shown by the pink stars in Fig. 5. On
the other side of the EP, marked by C in Fig. 4(b), the non-
Hermitian chain belongs to the degenerating region. In this
case, the edge states are barely affected by the added perturba-
tion, as shown by the blue triangles in Fig. 5. Comparing the
results for these three regimes, we see that the sensitivity of edge
states to perturbation at the end of the chain is strongly affected
around the EP. From the splitting region to the degenerating
region, the sensitivity of the edge states first increases and then
decreases. It is important to note that although the topological
edge states are sensitive to perturbation at the end of chain, they
are robust to different perturbations and disorders in the inner
chain [12]. Thus, this sensor based on the EP of the edge states
in a non-Hermitian topological dimer chain is highly sensitive
to perturbation of on-site frequency at the end of the structure
due to external environment changes, but is topologically pro-
tected from internal fabrication errors induced by site-to-site
coupling changes in the system. In addition, based on the edge
states at the two ends of the topological dimer chain, a new type
of robust wireless power transfer may also be realized in our
platform [33,75–78].

At the end of this section, we verify the robustness of the
non-Hermitian dimer chain from internal perturbation of site-
to-site couplings in experiments. This additional robustness
comes from the recovery of the topological zero mode [66].

Figure 6 shows the evolution of the averaged frequency splitting
of edge states as a function of the disorder strength. It is clear
that the fluctuation of edge states in the splitting region grows
significantly with disorder strength increase. However, when
the edge states are merged, the influence of the same disturb-
ance on the edge states will be obviously reduced. Therefore,
the enhanced robustness of the recovered topological zero mode
is demonstrated. Specially, based on the EP realized by the edge
states in the non-Hermitian dimer chain, we realize a new sen-
sor that is sensitive to perturbation of on-site frequency at the
end of the structure, yet topologically protected from internal
perturbation of site-to-site couplings.

4. CONCLUSION

In summary, using a finite non-Hermitian topological dimer
chain, we study the sensitivity of edge states in three different
regimes: the splitting regime, the EP, and the degenerating re-
gime. According to conventional wisdom, the edge states in a
topological structure are topologically protected, which makes
them robust to structural perturbations. In this work, we show
experimentally that the edge states in the degenerating regime
after the EP can enhance topological protection in a finite sys-
tem. However, this scenario breaks down at the EP, and the
degenerating regime becomes very sensitive to perturbation
at the end of the non-Hermitian chain. Our results for the
EP of edge states not only improve understanding of the ro-
bustness of topological states but also provide a new scheme
for designing a new type of sensor with topological protection
against internal disturbances of site-to-site couplings and high
sensitivity to boundary on-site frequency perturbations.
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