• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0728004 (2023)
Qi Yang1, Binbin Luo1、*, Zhipeng Gu2, Shengxi Wu2, Shenghui Shi1, and Mingfu Zhao1
Author Affiliations
  • 1Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
  • 2Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
  • show less
    DOI: 10.3788/LOP220600 Cite this Article Set citation alerts
    Qi Yang, Binbin Luo, Zhipeng Gu, Shengxi Wu, Shenghui Shi, Mingfu Zhao. Graphene Oxide Microfiber-Based Immunosensor for Rabies Virus[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0728004 Copy Citation Text show less
    References

    [1] Yu Y X[M]. Rabies and rabies vaccine(2009).

    [2] An Y W, Pang X L, Li K et al. Analysis of rabies vaccination and rabies outbreaks from 2005 to 2008 in Huadu District, Guangzhou[J]. Journal of Pathogen Biology, 8, 628-630(2013).

    [4] Robardet E, Andrieu S, Rasmussen T B et al. Comparative assay of fluorescent antibody test results among twelve European National Reference Laboratories using various anti-rabies conjugates[J]. Journal of Virological Methods, 191, 88-94(2013).

    [5] Ito M, Itou T, Shoji Y et al. Discrimination between dog-related and vampire bat-related rabies viruses in Brazil by strain-specific reverse transcriptase-polymerase chain reaction and restriction fragment length polymorphism analysis[J]. Journal of Clinical Virology, 26, 317-330(2003).

    [6] Wright E, Temperton N J, Marston D A et al. Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a cross-species comparison[J]. The Journal of General Virology, 89, 2204-2213(2008).

    [7] Zhang S F, Zhang F, Liu Y et al. Comparison between FAVN and RFFIT for rabies neutralizing antibody detection of sera from animals and human[J]. International Journal of Laboratory Medicine, 36, 1161-1163(2015).

    [8] Moeschler S, Locher S, Conzelmann K K et al. Quantification of lyssavirus-neutralizing antibodies using vesicular stomatitis virus pseudotype particles[J]. Viruses, 8, 254(2016).

    [9] Ren Y X. Development&preliminary application of direct competitive ELISA for monitoring rabies antibody in canine[D](2015).

    [10] Bedeković T, Šimić I, Krešić N et al. Evaluation of ELISA for the detection of rabies virus antibodies from the thoracic liquid and muscle extract samples in the monitoring of fox oral vaccination campaigns[J]. BMC Veterinary Research, 12, 76-84(2016).

    [11] Wasniewski M, Almeida I, Baur A et al. First international collaborative study to evaluate rabies antibody detection method for use in monitoring the effectiveness of oral vaccination programmes in fox and raccoon dog in Europe[J]. Journal of Virological Methods, 238, 77-85(2016).

    [12] Ondrejková A, Süli J, Ondrejka R et al. Detection of rabies antibodies in dog sera[J]. Polish Journal of Veterinary Sciences, 18, 47-51(2015).

    [13] Sun L P, Huang Y Y, Guan B O. Microfiber interferometric biosensors[J]. Laser & Optoelectronics Progress, 58, 1306004(2021).

    [14] Shi S H, Nie Q L, Jiang S H et al. Biosensor based on dual-resonance long-period fiber gratings for detection of H9N2 subtype avian influenza virus[J]. Acta Optica Sinica, 42, 0106001(2022).

    [15] Liu C, Cai Q, Xu B J et al. Graphene oxide functionalized long period grating for ultrasensitive label-free immunosensing[J]. Biosensors and Bioelectronics, 94, 200-206(2017).

    [16] Luo B B, Lu H F, Shi S H et al. Immunosensing platform with large detection range using an excessively tilted fiber grating coated with graphene oxide[J]. Applied Optics, 57, 8805-8810(2018).

    [17] Luo H P, Sun Q Z, Li X L et al. Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer[J]. Optics Letters, 40, 5042-5045(2015).

    [18] Liu K J, Fan J H, Luo B B et al. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer[J]. Optics Express, 29, 32983-32995(2021).

    [19] Huang Y Y, Yu B, Guo T et al. Ultrasensitive and in situ DNA detection in various pH environments based on a microfiber with a graphene oxide linking layer[J]. RSC Advances, 7, 13177-13183(2017).

    [20] Girei S H, Lim H N, Ahmad M Z et al. High sensitivity microfiber interferometer sensor in aqueous solution[J]. Sensors, 20, 4713(2020).

    [21] Fang F, Li Y P, Yang L Y et al. Sensitive and in situ hemoglobin detection based on a graphene oxide functionalized microfiber[J]. Nanomaterials, 10, 2461(2020).

    [22] Qin C C, Guo W L, Liu Y et al. A novel electrochemical sensor based on graphene oxide decorated with silver nanoparticles-molecular imprinted polymers for determination of sunset yellow in soft drinks[J]. Food Analytical Methods, 10, 2293-2301(2017).

    [23] Li Y P, Ma H, Gan L et al. Selective and sensitive Escherichia coli detection based on a T4 bacteriophage-immobilized multimode microfiber[J]. Journal of Biophotonics, 11, e201800012(2018).

    [24] Li B R, Chen C W, Yang W L et al. Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor[J]. Biosensors and Bioelectronics, 45, 252-259(2013).

    [25] Chiavaioli F, Gouveia C A J, Jorge P A S et al. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors[J]. Biosensors, 7, 23(2017).

    Qi Yang, Binbin Luo, Zhipeng Gu, Shengxi Wu, Shenghui Shi, Mingfu Zhao. Graphene Oxide Microfiber-Based Immunosensor for Rabies Virus[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0728004
    Download Citation