• Journal of Semiconductors
  • Vol. 44, Issue 12, 121401 (2023)
Qirui Ren1、2, Xiaofan Sun1、2, Xiangqu Fu1、2, Shuaidi Zhang1、2, Yiyang Yuan1、2, Hao Wu1、2, Xiaoran Li3, Xinghua Wang3, and Feng Zhang1、2、*
Author Affiliations
  • 1Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 2School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 101408, China
  • 3School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.1088/1674-4926/44/12/121401 Cite this Article
    Qirui Ren, Xiaofan Sun, Xiangqu Fu, Shuaidi Zhang, Yiyang Yuan, Hao Wu, Xiaoran Li, Xinghua Wang, Feng Zhang. A review of automatic detection of epilepsy based on EEG signals[J]. Journal of Semiconductors, 2023, 44(12): 121401 Copy Citation Text show less
    References

    [1] A J Casson, D C Yates, S J M Smith et al. Wearable electroencephalography. IEEE Eng Med Biol Mag, 29, 44(2010).

    [2] J R Stevens. Seizure occurrence and interspike interval. Arch Neurol, 26, 409(1972).

    [3] S Noachtar, J Rémi. The role of EEG in epilepsy: A critical review. Epilepsy Behav, 15, 22(2009).

    [4] M Piccolino, M Bresadola. Drawing a spark from darkness: John Walsh and electric fish. Trends Neurosci, 25, 51(2002).

    [5] M Z Ilyas, P Saad, M I Ahmad. A survey of analysis and classification of EEG signals for brain-computer interfaces, 1(2015).

    [6] W J R Dunseath, E F Kelly. Multichannel PC-based data-acquisition system for high-resolution EEG. IEEE Trans Biomed Eng, 42, 1212(1995).

    [7] W Pribyl, H Hadl. 32+32+8 channel data acquisition system for bio-signals in routine and research applications, 2685(1992).

    [8] E Ratti, S Waninger, C Berka et al. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front Hum Neurosci, 11, 398(2017).

    [9] J W Xu, S Mitra, A Matsumoto et al. A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE J Solid-State Circuits, 49, 2005(2014).

    [10] J W Xu, B Büsze, C Van Hoof et al. A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE J Solid-State Circuits, 50, 2090(2015).

    [11] K A Ng, Y P Xu. A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J Solid-State Circuits, 51, 724(2016).

    [12] S Y Park, J Cho, K Na et al. Modular 128-channel Δ-Δσ analog front-end architecture using spectrum equalization scheme for 1024-channel 3-D neural recording microsystems. IEEE J Solid-State Circuits, 53, 501(2018).

    [13] A Karimi-Bidhendi, O Malekzadeh-Arasteh, M C Lee et al. CMOS ultralow power brain signal acquisition front-ends: Design and human testing. IEEE Trans Biomed Circuits Syst, 11, 1111(2017).

    [14] H Wang, P P Mercier. A current-mode capacitively-coupled chopper instrumentation amplifier for biopotential recording with resistive or capacitive electrodes. IEEE Trans Circuits Syst II Express Briefs, 65, 699(2018).

    [15] C Y Wu, C H Cheng, Z X Chen. A 16-channel CMOS chopper-stabilized analog front-end ECoG acquisition circuit for a closed-loop epileptic seizure control system. IEEE Trans Biomed Circuits Syst, 12, 543(2018).

    [16] M Tohidi, J K Madsen, M J R Heck et al. A low-power analog front-end neural acquisition design for seizure detection, 1(2016).

    [17] J W Zheng, W H Ki, L Y Hu et al. Chopper capacitively coupled instrumentation amplifier capable of handling large electrode offset for biopotential recordings. IEEE Trans Circuits Syst II Express Briefs, 64, 1392(2017).

    [18] J W Zheng, W H Ki, C Y Tsui. A fully integrated analog front end for biopotential signal sensing. IEEE Trans Circuits Syst I Regul Pap, 65, 3800(2018).

    [19] P Tallgren, S Vanhatalo, K Kaila et al. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol, 116, 799(2005).

    [20] P Griss, P Enoksson, H K Tolvanen-Laakso et al. Micromachined electrodes for biopotential measurements. J Microelectromechanical Syst, 10, 10(2001).

    [21] Y J Huang, C Y Wu, A M K Wong et al. Novel active comb-shaped dry electrode for EEG measurement in hairy site. IEEE Trans Biomed Eng, 62, 256(2015).

    [22] L D Liao, I J Wang, S F Chen et al. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors, 11, 5819(2011).

    [23] C J Harland, T D Clark, R J Prance. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors. Appl Phys Lett, 81, 3284(2002).

    [24] T J Sullivan, S R Deiss, G Cauwenberghs. A low-noise, non-contact EEG/ECG sensor, 154(2008).

    [25] B Renshaw, A Forbes, B R Morison. Activity of isocortex and hippocampus: Electrical studies with micro-electrodes. J Neurophysiol, 3, 74(1940).

    [26] B L McNaughton, J O'Keefe, C A Barnes. The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods, 8, 391(1983).

    [27] K A Moxon, S C Leiser, G A Gerhardt et al. Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans Biomed Eng, 51, 647(2004).

    [28] T Adrega, S P Lacour. Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization. J Micromech Microeng, 20, 055025(2010).

    [29] J G Webster, J W Clark. Medical instrumentation: application and design. John Wiley & Sons(2010).

    [30] J C Huhta, J G Webster. 60-HZ interference in electrocardiography. IEEE Trans Biomed Eng, 20, 91(1973).

    [31] E S Winokur, M K Delano, C G Sodini. A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans Biomed Eng, 60, 189(2013).

    [32] E M Spinelli, M A Mayosky. Two-electrode biopotential measurements: Power line interference analysis. IEEE Trans Biomed Eng, 52, 1436(2005).

    [33] R E Serrano, M Gasulla, O Casas et al. Power line interference in ambulatory biopotential measurements. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), Cancun, 3024(2003).

    [34] Y Higashi, Y Yokota, Y Naruse. Signal correlation between wet and original dry electrodes in electroencephalogram according to the contact impedance of dry electrodes, 1062(2017).

    [35] M Guermandi, E F Scarselli, R Guerrieri. A driving right leg circuit (DgRL) for improved common mode rejection in bio-potential acquisition systems. IEEE Trans Biomed Circuits Syst, 10, 507(2016).

    [36] J A Costa, T C Pimenta. CMOS analog front-end IC for EEG applications with high powerline interference rejection, 1(2018).

    [37] R Kaur, R Malhotra, S Deb. MAC based FIR filter: A novel approach for low-power real-time de-noising of ECG signals, 1(2015).

    [38] Y Liu, F L An, X Lang et al. Remove motion artifacts from scalp single channel EEG based on noise assisted least square multivariate empirical mode decomposition, 568(2020).

    [39] A Bakker, J Huijsing. High-accuracy CMOS smart temperature sensors. Springer(2000).

    [40] A Jain, K Kandpal. Design of a high gain, temperature compensated biomedical instrumentation amplifier for EEG applications, 292(2017).

    [41] G C Huang, T Yin, Q S Wu et al. A 1.3 μW 0.7 μRMS chopper current-reuse instrumentation amplifier for EEG applications, 2624(2015).

    [42] Y T Dong, L H Tang, X L Yang et al. A 1.8 μW 32 nV/√Hz current-reuse capacitively-coupled instrumentation amplifier for EEG detection, 1(2017).

    [43] C J Lee, J I Song. A chopper stabilized current-feedback instrumentation amplifier for EEG acquisition applications. IEEE Access, 7, 11565(2019).

    [44] Z Hoseini, M Nazari, K S Lee et al. Current feedback instrumentation amplifier with built-In differential electrode offset cancellation loop for ECG/EEG sensing frontend. IEEE Trans Instrum Meas, 70, 1(2021).

    [45] Y Z Zhou, M L Zhao, Y T Dong et al. A low-power low-noise biomedical instrumentation amplifier using novel ripple-reduction technique, 1(2018).

    [46] R Chebli, M Sawan. Chopped logarithmic programmable gain amplifier intended to EEG acquisition interface, 1(2014).

    [47] B Babušiak, Š Borik. Bio-Amplifier with programmable gain and adjustable leads, 616(2013).

    [48] I Y AbuShawish, S A Mahmoud. Digitally programmable gain and tunable band-width DPOTA based bio-medical amplifier, 147(2021).

    [49] N Marchon, G Naik. A novel linear phase FIR high pass filter for biomedical signals, 147(2019).

    [50] I Winkler, S Debener, K R Müller et al. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP, 4101(2015).

    [51] A Abdallah, M Diab, S Mahmoud. A micropower EEG detection system applicable for paralyzed hand artifical control, 411(2017).

    [52] K N Wang, C H Chang, M Onabajo. A fully-differential CMOS low-pass Notch filter for biosignal measurement devices with high interference rejection, 1041(2014).

    [53] A Kumar Sahu, A Kumar Sahu. A review on different filter design techniques and topologies for bio-potential signal acquisition systems, 934(2019).

    [54] G K Soni, H Singh, H Arora et al. Ultra low power CMOS low pass filter for biomedical ECG/EEG application, 558(2020).

    [55] X L Yang, Y Zhou, M L Zhao et al. A 12b 238kS/s SAR ADC with novel built-in digital calibration method for EEG acquisition applications, 1(2015).

    [56] X L Yang, M L Zhao, Y T Dong et al. A 14.9μW analog front-end with capacitively-coupled instrumentation amplifier and 14-bit SAR ADC for epilepsy diagnosis system, 268(2017).

    [57] H França, M Ataei, A Boegli et al. A 100nW 10-bit 400S/s SAR ADC for ultra low-power bio-sensing applications, 1(2017).

    [58] W C Lai. SAR ADC with optical frontend for biosensor applications, 1(2021).

    [59] R Arif, S K Wijaya et al. Design of EEG data acquisition system based on Raspberry Pi 3 for acute ischemic stroke identification, 271(2018).

    [60] R Martins, S Selberherr, FA Vaz. A CMOS IC for portable EEG acquisition systems. IEEE Transactions on Instrumentation and Measurement, 47, 1191(1998).

    [61] C L Qian, J Parramon, E Sanchez-Sinencio. A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid-State Circuits, 46, 1392(2011).

    [62] S Robinet, P Audebert, G Regis et al. A low-power 0.7 μVrms 32-channel mixed-signal circuit for ECoG recordings. IEEE J Emerg Sel Topics Circuits Syst, 1, 451(2011).

    [63] H Y Zhou, M Voelker, J Hauer. A mixed-signal front-end ASIC for EEG acquisition system, 649(2013).

    [64] J Yoo, L Yan, D El-Damak et al. An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE J Solid-State Circuits, 48, 214(2013).

    [65] R Muller, H P Le, W Li et al. A minimally invasive 64-channel wireless μECoG implant. IEEE J Solid-State Circuits, 50, 344(2015).

    [66] W A Smith, B J Mogen, E E Fetz et al. Exploiting electrocorticographic spectral characteristics for optimized signal chain design: A 1.08 W analog front end with reduced ADC resolution requirements. IEEE Trans Biomed Circuits Syst, 10, 1171(2016).

    [67] M Tohidi, J Kargaard Madsen, F Moradi. Low-power high-input-impedance EEG signal acquisition SoC with fully integrated IA and signal-specific ADC for wearable applications. IEEE Trans Biomed Circuits Syst, 13, 1437(2019).

    [68] T Tang, W L Goh, L Yao et al. A TDM-based 16-channel AFE ASIC with enhanced system-level CMRR for wearable EEG recording with dry electrodes. IEEE Trans Biomed Circuits Syst, 14, 516(2020).

    [69] D Gao, L X Liu. A two-stage time-division multiplexing AFE with input impedance boosting DDA for EEG signal acquisition, 1(2021).

    [70] C W Huang, J J Wang, C C Hung et al. Design of CMOS analog front-end electroencephalography (EEG) amplifier with ±1-V common-mode and ±10-mV differential-mode artifact removal, 714(2022).

    [71] A L Goldberger, L A N Amaral, L Glass et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101, e215(2000).

    [72] A Burrello, L Cavigelli, K Schindler et al. Laelaps: an energy-efficient seizure detection algorithm from long-term human iEEG recordings without false alarms, 752(2019).

    [73] R G Andrzejak, K Schindler, C Rummel. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E, 86, 046206(2012).

    [74] R San-Segundo, M Gil-Martín, L F D'Haro-Enríquez et al. Classification of epileptic EEG recordings using signal transforms and convolutional neural networks. Comput Biol Med, 109, 148(2019).

    [76] A K Jaiswal, H Banka. Epileptic seizure detection in EEG signal with GModPCA and support vectormachine. Bio Med Mater Eng, 28, 141(2017).

    [77] A K Jaiswal, H Banka. Epileptic seizure detection in EEG signal using machine learning techniques. Australas Phys Eng Sci Med, 41, 81(2018).

    [78] U Acharya, S L Oh, Y Hagiwara et al. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med, 100, 270(2018).

    [79] A Sharmila, P Geethanjali. Effect of filtering with time domain features for the detection of epileptic seizure from EEG signals. J Med Eng Technol, 42, 217(2018).

    [80] J Saini, M Dutta. Epilepsy classification using optimized artificial neural network. Neurol Res, 40, 982(2018).

    [81] H Al-Hadeethi, S Abdulla, M Diykh et al. Adaptive boost LS-SVM classification approach for time-series signal classification in epileptic seizure diagnosis applications. Expert Syst Appl, 161, 113676(2020).

    [82] A Eltrass, M Tayel, A F EL-qady. Automatic epileptic seizure detection approach based on multi-stage Quantized Kernel Least Mean Square filters. Biomed Signal Process Control, 70, 103031(2021).

    [83] M Zeng, X N Zhang, C Y Zhao et al. GRP-DNet: A gray recurrence plot-based densely connected convolutional network for classification of epileptiform EEG. J Neurosci Methods, 347, 108953(2021).

    [84] X M Hu, S S Yuan, F Z Xu et al. Scalp EEG classification using deep Bi-LSTM network for seizure detection. Comput Biol Med, 124, 103919(2020).

    [85] A Quintero-Rincón, C D'Giano, H Batatia. A quadratic linear-parabolic model-based EEG classification to detect epileptic seizures. J Biomed Res, 34, 205(2020).

    [86] Z Gao, G L Lu, P Yan et al. Automatic change detection for real-time monitoring of EEG signals. Front Physiol, 9, 325(2018).

    [87] Y Li, X D Wang, M L Luo et al. Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions. IEEE J Biomed Health Inform, 22, 386(2018).

    [88] H Choubey, A Pandey. A new feature extraction and classification mechanisms For EEG signal processing. Multidimens Syst Signal Process, 30, 1793(2019).

    [89] V Gupta, R B Pachori. Epileptic seizure identification using entropy of FBSE based EEG rhythms. Biomed Signal Proces, 53, 101569(2019).

    [90] J A de la O Serna, M R A Paternina, A Zamora-Méndez et al. EEG-rhythm specific Taylor–Fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals. IEEE Sens J, 20, 6542(2020).

    [91] P Mathur, V K Chakka, S B Shah. Ramanujan periodic subspace based epileptic EEG signals classification. IEEE Sens Lett, 5, 1(2021).

    [92] J Y Na, Z P Wang, S Q Lv et al. An extended K nearest neighbors-based classifier for epilepsy diagnosis. IEEE Access, 9, 73910(2021).

    [93] H Pal, A Kumar. Stability analysis of multiscale bubble entropy and power metric based seizure detection technique with MLA. IETE J Res, 69, 3455(2023).

    [94] Z P Wang, J Y Na, B Y Zheng. An improved kNN classifier for epilepsy diagnosis. IEEE Access, 8, 100022(2020).

    [95] A Mansouri, S P Singh, K Sayood. Online EEG seizure detection and localization. Algorithms, 12, 176(2019).

    [96] J Birjandtalab, M Baran Pouyan, D Cogan et al. Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput Biol Med, 82, 49(2017).

    [97] J Zhang, Z C Wei, J Z Zou et al. Automatic epileptic EEG classification based on differential entropy and attention model. Eng Appl Artif Intell, 96, 103975(2020).

    [98] T Iešmantas, R Alzbutas. Convolutional neural network for detection and classification of seizures in clinical data. Med Biol Eng Comput, 58, 1919(2020).

    [99] A Sharmila, P Mahalakshmi. Wavelet-based feature extraction for classification of epileptic seizure EEG signal. J Med Eng Technol, 41, 670(2017).

    [100] Q Liu, X G Zhao, Z G Hou et al. Epileptic seizure detection based on the kernel extreme learning machine. Technol Health Care, 25, 399(2017).

    [101] R R Sharma, P Varshney, R B Pachori et al. Automated system for epileptic EEG detection using iterative filtering. IEEE Sens Lett, 2, 1(2018).

    [102] M G Tsipouras. Spectral information of EEG signals with respect to epilepsy classification. EURASIP J Adv Signal Process, 2019, 1(2019).

    [103] C Mahjoub, R Le Bouquin Jeannès, T Lajnef et al. Epileptic seizure detection on EEG signals using machine learning techniques and advanced preprocessing methods. Biomedical Engineering / Biomedizinische Technik, 65, 1(2019).

    [104] H S Chiang, M Y Chen, Y J Huang. Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net. IEEE Access, 7, 103255(2019).

    [105] S N Chen, X Zhang, L L Chen et al. Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features. IEEE Access, 7, 61046(2019).

    [106] I Aliyu, C G Lim. Selection of optimal wavelet features for epileptic EEG signal classification with LSTM. Neural Comput & Applic, 35, 1077(2023).

    [107] A Anuragi, D Singh Sisodia, R B Pachori. Epileptic-seizure classification using phase-space representation of FBSE-EWT based EEG sub-band signals and ensemble learners. Biomed Signal Process Control, 71, 103138(2022).

    [108] S R Ashokkumar, S Anupallavi, M Premkumar et al. Implementation of deep neural networks for classifying electroencephalogram signal using fractional S-transform for epileptic seizure detection. Int J Imaging Syst Tech, 31, 895(2021).

    [109] S R Ashokkumar, G MohanBabu, S Anupallavi. A novel two-band equilateral wavelet filter bank method for an automated detection of seizure from EEG signals. Int J Imaging Syst Tech, 30, 978(2020).

    [110] S Nasiri, G D Clifford. Generalizable seizure detection model using generating transferable adversarial features. IEEE Signal Process Lett, 28, 568(2021).

    [111] K Zeng, G X Ouyang, H Chen et al. Characterizing dynamics of absence seizure EEG with spatial-temporal permutation entropy. Neurocomputing, 275, 577(2018).

    [112] Q Y Zhan, W Hu. An epilepsy detection method using multiview clustering algorithm and deep features. Comput Math Methods Med, 2020, 1(2020).

    [113] J W Mu, L Y Dai, J X Liu et al. Automatic detection for epileptic seizure using graph-regularized nonnegative matrix factorization and Bayesian linear discriminate analysis. Biocybern Biomed Eng, 41, 1258(2021).

    [114] Z Mohammadpoory, M Nasrolahzadeh, J Haddadnia. Epileptic seizure detection in EEGs signals based on the weighted visibility graph entropy. Seizure, 50, 202(2017).

    [115] P Li, C Karmakar, J Yearwood et al. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS One, 13, e0193691(2018).

    [116] S Lahmiri, A Shmuel. Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients. IEEE Trans Instrum Meas, 68, 791(2019).

    [117] A Attia, A Moussaoui, Y Chahir. Epileptic seizures identification with autoregressive model and firefly optimization based classification. Evol Syst, 12, 827(2021).

    [118] Z Brari, S Belghith. A novel machine learning model for the detection of epilepsy and epileptic seizures using electroencephalographic signals based on chaos and fractal theories. Math Probl Eng, 2021, 1(2021).

    [119] X Z Gao, X Y Yan, P Gao et al. Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks. Artificial intelligence in medicine, 102, 101711(2019).

    [120] A Goshvarpour, A Goshvarpour. Diagnosis of epileptic EEG using a lagged Poincare plot in combination with the autocorrelation. Signal Image and Video Processing, 14, 1309(2020).

    [121] D Priyasad, T Fernando, S Denman et al. Interpretable seizure classification using unprocessed EEG with multi-channel attentive feature fusion. IEEE Sens J, 21, 19186(2021).

    [122] N Mahmoodian, A Boese, M Friebe et al. Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure, 66, 4(2019).

    [123] X Lu, J Zhang, S Huang et al. Detection and classification of epileptic EEG signals by the methods of nonlinear dynamics. Chaos Solitons & Fractals, 151, 111032(2021).

    [124] M S J Solaija, S Saleem, K Khurshid et al. Dynamic mode decomposition based epileptic seizure detection from scalp EEG. IEEE Access, 6, 38683(2018).

    [125] O Faust, U R Acharya, H Adeli et al. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 26, 56(2015).

    [126] Y L Zhang, W D Zhou, S S Yuan et al. Seizure detection method based on fractal dimension and gradient boosting. Epilepsy Behav, 43, 30(2015).

    [127] T Alexandros, G Markos, G Dimitrios et al. Automated epileptic seizure detection methods: A review study. Epilepsy–Histological, Electroencephalographic and Psychological Aspects, 2027(2012).

    [128] M T Salam, M Sawan, D K Nguyen. Epileptic seizure onset detection prior to clinical manifestation, 6210(2010).

    [129] J Gotman, L Y Wang. State-dependent spike detection: Concepts and preliminary results. Electroencephalogr Clin Neurophysiol, 79, 11(1991).

    [130] T Zhang, W Z Chen, M Y Li. Automatic seizure detection of electroencephalogram signals based on frequency slice wavelet transform and SVM. Acta Phys Sin, 65, 038703(2016).

    [131] A H Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. Massachusetts Institute of Technology, 1, 1(2009).

    [132] A K Tiwari, R B Pachori, V Kanhangad et al. Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J Biomed Health Inform, 21, 888(2017).

    [133] J Vicnesh, Y Hagiwara. Accurate detection of seizure using nonlinear parameters extracted from eeg signals. J Mech Med Biol, 19, 1940004(2019).

    [134] Y F Wang, Z C Li, L C Feng et al. Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification. Comput Math Methods Med, 2017, 1(2017).

    [135] M Sharma, R B Pachori, U Rajendra Acharya. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit Lett, 94, 172(2017).

    [136] D Chen, S R Wan, J Xiang et al. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS One, 12, e0173138(2017).

    [137] R S Selvakumari, M Mahalakshmi, P Prashalee. Patient-specific seizure detection method using hybrid classifier with optimized electrodes. J Med Syst, 43, 121(2019).

    [138] M Z Parvez, M Paul. Epileptic seizure detection by analyzing EEG signals using different transformation techniques. Neurocomputing, 145, 190(2014).

    [139] L Guo, D Rivero, J Dorado et al. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods, 191, 101(2010).

    [140] Q Yuan, W D Zhou, L R Zhang et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure, 50, 99(2017).

    [141] S Raghu, N Sriraam. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms. Expert Syst Appl, 113, 18(2018).

    [142] O K Fasil, R Rajesh. Time-domain exponential energy for epileptic EEG signal classification. Neurosci Lett, 694, 1(2019).

    [143] E Alickovic, J Kevric, A Subasi. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Process Control, 39, 94(2018).

    [144] K D Tzimourta, A T Tzallas, N Giannakeas et al. A robust methodology for classification of epileptic seizures in EEG signals. Health Technol, 9, 135(2019).

    [145] J Birjandtalab, V N Jarmale, M Nourani et al. Imbalance learning using neural networks for seizure detection, 1(2018).

    [146] X S Wang, G H Gong, N Li et al. Detection analysis of epileptic EEG using a novel random forest model combined with grid search optimization. Front Hum Neurosci, 13, 52(2019).

    [147] A Y Yan, W D Zhou, Q Yuan et al. Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG. Epilepsy Behav, 45, 8(2015).

    [148] M Mursalin, S S Islam, M K Noman et al. Epileptic seizure classification using statistical sampling and a novel feature selection algorithm(2019).

    [149] M K Siddiqui, M Z Islam, M A Kabir. Analyzing performance of classification techniques in detecting epileptic seizure. International Conference on Advanced Data Mining and Applications. ADMA 2017. Lecture Notes in Computer Science. Springer, Cham, 10604, 386(2017).

    [150] M Mursalin, Y Zhang, Y H Chen et al. Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing, 241, 204(2017).

    [151] H Rajaguru, S K Prabhakar. Multilayer autoencoders and EM-PCA with genetic algorithm for epilepsy classification from EEG, 353(2018).

    [152] S W Ji, W Xu, M Yang et al. 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell, 35, 221(2013).

    [153] G C Jana, R Sharma, A Agrawal. A 1D-CNN-spectrogram based approach for seizure detection from EEG signal. Procedia Comput Sci, 167, 403(2020).

    [154] M T Avcu, Z Zhang, D W Shih Chan. Seizure detection using least eeg channels by deep convolutional neural network. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1120(2019).

    [155] P Bizopoulos, G I Lambrou, D Koutsouris. Signal2Image modules in deep neural networks for EEG classification, 702(2019).

    [156] D K Thara, B G PremaSudha, F Xiong. Epileptic seizure detection and prediction using stacked bidirectional long short term memory. Pattern Recognit Lett, 128, 529(2019).

    [157] S Roy, I Kiral-Kornek, S Harrer. ChronoNet: A deep recurrent neural network for abnormal EEG identification. Conference on Artificial Intelligence in Medicine in Europe. Springer, 47(2019).

    [158] K M Tsiouris, V C Pezoulas, M Zervakis et al. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med, 99, 24(2018).

    [159] R Akut. Wavelet based deep learning approach for epilepsy detection. Health Inf Sci Syst, 7, 1(2019).

    [160] R H Gabr, A I Shahin, A A Sharawi et al. A deep learning identification system for different epileptic seizure disease stages. J Eng Appl Sci, 67, 925(2020).

    [161] B C Zhang, W N Wang, Y T Xiao et al. Cross-subject seizure detection in EEGs using deep transfer learning. Comput Math Methods Med, 2020, 1(2020).

    [162] B Akbarian, A Erfanian. A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network. Biomed Signal Process Control, 59, 101878(2020).

    [163] S Hadiyoso, I Wijayanto, A Humairani. Signal dynamics analysis for epileptic seizure classification on EEG signals. Traitement Du Signal, 38, 73(2021).

    [164] Y N Zhao, C X Dong, G B Zhang et al. EEG-Based Seizure detection using linear graph convolution network with focal loss. Comput Methods Programs Biomed, 208, 106277(2021).

    [165] S W Jang, S H Lee. Detection of epileptic seizures using wavelet transform, peak extraction and PSR from EEG signals. Symmetry, 12, 1239(2020).

    [166] M N Ma, Y L Cheng, X H Wei et al. Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN. BMC Med Informat Decis Making, 21, 1(2021).

    [167] H S Nogay, H Adeli. Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning. Eur Neurol, 83, 602(2021).

    [168] A Yildiz, H S Zan, S Said. Classification and analysis of epileptic EEG recordings using convolutional neural network and class activation mapping. Biomed Signal Process Control, 68, 102720(2021).

    [169] L F Sui, X Y Zhao, Q B Zhao et al. Localization of epileptic foci by using convolutional neural network based on iEEG. Artificial Intelligence Applications and Innovations, Hersonissos, Crete(2019).

    [170] M A Bin Altaf, C Zhang, J Yoo. A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J Solid-State Circuits, 50, 2728(2015).

    [171] M A Bin Altaf, J Yoo. A 1.83-J/classification, 8-channel, patient-specific epileptic seizure classification SoC using a non-linear support vector machine. IEEE Trans Biomed Circuits Syst, 10, 49(2016).

    [172] S K Lin, L C Istiqomah et al. An ultra-low power smart headband for real-time epileptic seizure detection. IEEE J Transl Eng Heath Med, 6, 1(2018).

    [173] S A Huang, K C Chang, H H Liou et al. A 1.9-mW SVM processor with on-chip active learning for epileptic seizure control. IEEE J Solid-State Circuits, 55, 452(2020).

    [174] J H Liu, Z Zhu, Y Zhou et al. 4.5 BioAIP: A reconfigurable biomedical AI processor with adaptive learning for versatile intelligent health monitoring, 62(2021).

    [175] M L Zhang, L Zhang, C W Tsai et al. A patient-specific closed-loop epilepsy management SoC with one-shot learning and online tuning. IEEE J Solid-State Circuits, 57, 1049(2022).

    [176] L S Zhu, D S Liu, X H Li et al. An Efficient Hardware Architecture for Epileptic Seizure Detection using EEG Signals based on 1D-CNN, 1(2021).

    [177] A Chua, M I Jordan, R Muller. SOUL: An energy-efficient unsupervised online learning seizure detection classifier. IEEE J Solid-State Circuits, 57, 2532(2022).

    [178] C Q Li, C Lammie, X N Dong et al. Seizure detection and prediction by parallel memristive convolutional neural networks. IEEE Trans Biomed Circuits Syst, 16, 609(2022).

    [179] D M Goldenholz, A Kuhn, A Austermuehle et al. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia, 58, 77(2017).

    Qirui Ren, Xiaofan Sun, Xiangqu Fu, Shuaidi Zhang, Yiyang Yuan, Hao Wu, Xiaoran Li, Xinghua Wang, Feng Zhang. A review of automatic detection of epilepsy based on EEG signals[J]. Journal of Semiconductors, 2023, 44(12): 121401
    Download Citation