• Matter and Radiation at Extremes
  • Vol. 4, Issue 6, 065401 (2019)
H. Peng1、2、3、*, J.-R. Marquès4, L. Lancia4, F. Amiranoff5, R. L. Berger6, S. Weber7、8, and C. Riconda1
Author Affiliations
  • 1LULI, Sorbonne Université, CNRS, École Polytechnique, CEA, F-75252 Paris, France
  • 2Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 4LULI, CNRS, École Polytechnique, CEA, Université Paris-Saclay, Sorbonne Université, F-91128 Palaiseau, France
  • 5LULI, Sorbonne Université, CNRS, École Polytechnique, CEA, Université Paris-Saclay, F-75252 Paris, France
  • 6Lawrence Livermore National Laboratory, Livermore, California 94550, USA
  • 7Institute of Physics of the ASCR, ELI-Beamlines Project, 18221 Prague, Czech Republic
  • 8School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.1063/1.5091550 Cite this Article
    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, C. Riconda. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401 Copy Citation Text show less
    References

    [1] D. Strickland, G. A. Mourou. Opt. Commun., 56, 219(1985).

    [2] D. Forslund et al. Theory of stimulated scattering processes in laserirradiated plasmas. Phys. Fluids, 18, 1002(1975).

    [3] A. Andreev et al. Short light pulse amplification and compression by stimulated Brillouin scattering in plasmas in the strong coupling regime. Phys. Plasmas, 13, 053110(2006).

    [4] L. Lancia et al. Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime. Phys. Rev. Lett., 104, 025001(2010).

    [5] L. Lancia et al. Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification. Phys. Rev. Lett., 116, 075001(2016).

    [6] M. Chiaramello et al. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime. Phys. Plasmas, 23, 072103(2016).

    [7] M. Chiaramello et al. Role of frequency chirp and energy flow directionality in the strong coupling regime of Brillouin-based plasma amplification. Phys. Rev. Lett., 117, 235003(2016).

    [8] F. Amiranoff et al. The role of the global phase in the spatio-temporal evolution of strong-coupling Brillouin scattering. Phys. Plasmas, 25, 013114(2018).

    [9] S. Weber et al. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas. Phys. Rev. Lett., 111, 055004(2013).

    [10] C. Riconda et al. Spectral characteristics of ultra-short laser pulses in plasma amplifiers. Phys. Plasmas, 20, 083115(2013).

    [11] C. Riconda et al. Plasma-based creation of short light pulses: Analysis and simulation of amplification and focusing. Plasma Phys. Controlled Fusion, 57, 014002(2015).

    [12] K. H. Spatschek, G. Lehmann. Control of Brillouin short-pulse seed amplification by chirping the pump pulse. Phys. Plasmas, 22, 043105(2015).

    [13] F. Schluck et al. Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification. Phys. Plasmas, 23, 083105(2016).

    [14] H. Peng et al. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma. Phys. Plasmas, 23, 073516(2016).

    [15] Z. M. Zhang et al. Generation of high-power few-cycle lasers via Brillouin-based plasma amplification. Phys. Plasmas, 24, 113104(2017).

    [16] H. Peng et al. Strongly coupled stimulated Brillouin amplification in pump-ionizing plasma. Laser Phys. Lett., 15, 026003(2018).

    [17] M. Nakatsutsumi et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. Opt. Lett., 35, 2314(2010).

    [18] R. K. Kirkwood et al. Plasma-based beam combiner for very high fluence and energy. Nat. Phys., 14, 80(2018).

    [19] R. K. Kirkwood et al. A plasma amplifier to combine multiple beams at NIF. Phys. Plasmas, 25, 056701(2018).

    [20] A. Leblanc et al. Plasma holograms for ultrahigh-intensity optics. Nat. Phys., 13, 440(2017).

    [21] C. Thaury et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys., 3, 424(2007).

    [22] R. L. Berger et al. Theory and three dimensional simulation of light filamentation in laser produced plasma. Phys. Fluids B: Plasma Phys., 5, 2243(1993).

    [23] R. L. Berger et al. On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasmas, 5, 4337(1998).

    [24] J.-R. Marquès et al. Joule-level high-efficiency energy transfer to subpicosecond laser pulses by a plasma-based amplifier. Phys. Rev. X, 9, 021008(2019).

    [25] P. Michel et al. Dynamic control of the polarization of intense laser beams via optical wave mixing in plasmas. Phys. Rev. Lett., 113, 205001(2014).

    [26] G. Lehmann, K. Spatschek. Transient plasma photonic crystals for high-power lasers. Phys. Rev. Lett., 116, 225002(2016).

    [27] G. Lehmann, K. H. Spatschek. Plasma-based polarizer and waveplate at large laser intensity. Phys. Rev. E, 97, 063201(2018).

    [28] D. Turnbull et al. High power dynamic polarization control using plasma photonics. Phys. Rev. Lett., 116, 205001(2016).

    [29] D. Turnbull et al. Refractive index seen by a probe beam interacting with a laser-plasma system. Phys. Rev. Lett., 118, 015001(2017).

    CLP Journals

    [1] Ping Li, Jun Zhang, Xiaofeng Wei. Plasma optics technologies: State of the art and future perspective[J]. High Power Laser and Particle Beams, 2020, 32(1): 011008

    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, C. Riconda. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401
    Download Citation