• Matter and Radiation at Extremes
  • Vol. 4, Issue 6, 065401 (2019)
H. Peng1、2、3、*, J.-R. Marquès4, L. Lancia4, F. Amiranoff5, R. L. Berger6, S. Weber7、8, and C. Riconda1
Author Affiliations
  • 1LULI, Sorbonne Université, CNRS, École Polytechnique, CEA, F-75252 Paris, France
  • 2Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • 3Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • 4LULI, CNRS, École Polytechnique, CEA, Université Paris-Saclay, Sorbonne Université, F-91128 Palaiseau, France
  • 5LULI, Sorbonne Université, CNRS, École Polytechnique, CEA, Université Paris-Saclay, F-75252 Paris, France
  • 6Lawrence Livermore National Laboratory, Livermore, California 94550, USA
  • 7Institute of Physics of the ASCR, ELI-Beamlines Project, 18221 Prague, Czech Republic
  • 8School of Science, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.1063/1.5091550 Cite this Article
    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, C. Riconda. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401 Copy Citation Text show less

    Abstract

    The use of plasmas provides a way to overcome the low damage threshold of classical solid-state based optical materials, which is the main limitation encountered in producing and manipulating intense and energetic laser pulses. Plasmas can directly amplify or alter the characteristics of ultra-short laser pulses via the three-wave coupling equations for parametric processes. The strong-coupling regime of Brillouin scattering (sc-SBS) is of particular interest: recent progress in this domain is presented here. This includes the role of the global phase in the spatio-temporal evolution of the three-wave coupled equations for backscattering that allows a description of the coupling dynamics and the various stages of amplification from the initial growth to the so-called self-similar regime. The understanding of the phase evolution allows control of the directionality of the energy transfer via the phase relation between the pulses. A scheme that exploits this coupling in order to use the plasma as a wave plate is also suggested.
    (t+vgx)Ep=μNEssinϑ,(1)

    View in Article

    (t+vgx)φp=μNEsEpcosϑ,(2)

    View in Article

    (tvgx)Es=+μNEpsinϑ,(3)

    View in Article

    (tvgx)φs=μNEpEscosϑ,(4)

    View in Article

    t2NN(tφ)2cs2(x2NN(xφ)2)=ΛEpEscosφ,(5)

    View in Article

    Nt2φ+2tNtφcs2(2xNxφ+Nx2φ)=ΛEpEssinφ,(6)

    View in Article

    t2N=ΛEpEscosϑ.(7)

    View in Article

    N=ΛEpEscosϑt22.(8)

    View in Article

    φs493(γsct)3,(9)

    View in Article

    φp493(γsct)3Es2Ep2.(10)

    View in Article

    N(x,t)=0,x>vgt,ΛEpEs12(txvg)2,vg(tT)xvgt,12ΛEpEsT2,x<vg(tT).(11)

    View in Article

    τφs(X,τ)=μNEpEs,(12)

    View in Article

    N(X,τ)=0,X>2vgτ,ΛEpEs12(2τXvg)2,vg(2τT)x2vgτ,12ΛEpEsT2,x<vg(2τT).(13)

    View in Article

    φs(X,τ)=μEpEsX2vgτ(ΛEpEs(2τXvg)22)dτ.(14)

    View in Article

    φs(X,τ)=0,X>2vgτ,293γsc3(2τXvg)3,vg(2τT)X2vgτ,293γsc3T3,X<vg(2τT).(15)

    View in Article

    φs(X,τ)=0,x>vgt,293γsc3(txvg)3,vg(tT)xvgt,293γsc3T3,0<x<vg(tT).(16)

    View in Article

    H. Peng, J.-R. Marquès, L. Lancia, F. Amiranoff, R. L. Berger, S. Weber, C. Riconda. Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(6): 065401
    Download Citation