• Photonics Research
  • Vol. 9, Issue 2, 142 (2021)
Seojoo Lee1、†, Jagang Park1、†, Hyukjoon Cho1, Yifan Wang2, Brian Kim2, Chiara Daraio2、3、*, and Bumki Min1、4、*
Author Affiliations
  • 1Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • 2Mechanical Engineering and Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
  • 3e-mail: daraio@caltech.edu
  • 4e-mail: bmin@kaist.ac.kr
  • show less
    DOI: 10.1364/PRJ.406215 Cite this Article Set citation alerts
    Seojoo Lee, Jagang Park, Hyukjoon Cho, Yifan Wang, Brian Kim, Chiara Daraio, Bumki Min. Parametric oscillation of electromagnetic waves in momentum band gaps of a spatiotemporal crystal[J]. Photonics Research, 2021, 9(2): 142 Copy Citation Text show less
    References

    [1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [3] J. D. Joannopoulos, P. R. Villeneuve, S. Fan. Photonic crystals. Solid State Commun., 102, 165-173(1997).

    [4] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Negative refraction by photonic crystals. Nature, 423, 604-605(2003).

    [5] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett., 87, 253902(2001).

    [6] X. Huang, Y. Lai, Z. H. Hang, H. Zheng, C. T. Chan. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater., 10, 582-586(2011).

    [7] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [8] A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [9] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade. Photonic Crystals: Molding the Flow of Light(2011).

    [10] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučkovićc. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett., 95, 013904(2005).

    [11] M. Lončar, T. Yoshie, A. Scherer, P. Gogna, Y. Qiu. Low-threshold photonic crystal laser. Appl. Phys. Lett., 81, 2680-2682(2002).

    [12] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee. Electrically driven single-cell photonic crystal laser. Science, 305, 1444-1447(2004).

    [13] M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B, 19, 2052-2059(2002).

    [14] B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 3, 206-210(2009).

    [15] P. Russell. Applied physics: photonic crystal fibers. Science, 299, 358-362(2003).

    [16] M. Bayindir, B. Temelkuran, E. Ozbay. Photonic-crystal-based beam splitters. Appl. Phys. Lett., 77, 3902-3904(2000).

    [17] M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’brien, P. D. Dapkus, W. K. Marshall. Two-dimensional photonic crystal Mach-Zehnder interferometers. Appl. Phys. Lett., 84, 460-462(2004).

    [18] Y. Jiang, W. Jiang, L. Gu, X. Chen, R. T. Chen. 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett., 87, 221105(2005).

    [19] Z. Yu, S. Fan. Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics, 3, 91-94(2009).

    [20] N. Chamanara, S. Taravati, Z. L. Deck-Léger, C. Caloz. Optical isolation based on space-time engineered asymmetric photonic band gaps. Phys. Rev. B, 96, 155409(2017).

    [21] S. Taravati, N. Chamanara, C. Caloz. Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Phys. Rev. B, 96, 165144(2017).

    [22] D. L. Sounas, A. Alù. Non-reciprocal photonics based on time modulation. Nat. Photonics, 11, 774-783(2017).

    [23] G. Huang, H. Chen, H. Nassar, Y. Wang, C. Daraio, B. Yousefzadeh. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett., 121, 194301(2018).

    [24] L. He, Z. Addison, J. Jin, E. J. Mele, S. G. Johnson, B. Zhen. Floquet Chern insulators of light. Nat. Commun., 10, 4194(2019).

    [25] R. Fleury, A. B. Khanikaev, A. Alù. Floquet topological insulators for sound. Nat. Commun., 7, 11744(2016).

    [26] K. Fang, Y. Wang. Anomalous quantum Hall effect of light in Bloch-wave modulated photonic crystals. Phys. Rev. Lett., 122, 233904(2019).

    [27] J. W. McIver, B. Schulte, F. U. Stein, T. Matsuyama, G. Jotzu, G. Meier, A. Cavalleri. Light-induced anomalous Hall effect in graphene. Nat. Phys., 16, 38-41(2020).

    [28] E. Poutrina, S. Larouche, D. R. Smith. Parametric oscillator based on a single-layer resonant metamaterial. Opt. Commun., 283, 1640-1646(2010).

    [29] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [30] C. Caloz, Z. L. Deck-Leger. Spacetime metamaterials—part I: general concepts. IEEE Trans. Antennas Propag., 68, 1569-1582(2020).

    [31] C. Caloz, Z. L. Deck-Leger. Spacetime metamaterials—part II: theory and applications. IEEE Trans. Antennas Propag., 68, 1583-1598(2020).

    [32] E. S. Cassedy. Temporal instabilities in traveling-wave parametric amplifiers. IRE Trans. Microw. Theory Tech., 10, 86-87(1962).

    [33] E. S. Cassedy. Dispersion relations in time-space periodic media part II-unstable interactions. Proc. IEEE, 55, 1154-1168(1967).

    [34] M. Blaauboer, A. G. Kofman, A. E. Kozhekin, G. Kurizki, D. Lenstra, A. Lodder. “Superluminal optical phase conjugation: pulse reshaping and instability. Phys. Rev. A, 57, 4905-4912(1998).

    [35] E. Galiffi, P. A. Huidobro, J. B. Pendry. Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett., 123, 206101(2019).

    [36] D. E. Holberg, K. S. Kunz. Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag., 14, 183-194(1966).

    [37] J. R. Zurita-Sánchez, P. Halevi, J. C. Cervantes-González. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t). Phys. Rev. A, 79, 053821(2009).

    [38] J. R. Zurita-Sánchez, P. Halevi. Resonances in the optical response of a slab with time-periodic dielectric function ε(t). Phys. Rev. A, 81, 053834(2010).

    [39] J. S. Martínez-Romero, O. M. Becerra-Fuentes, P. Halevi. Temporal photonic crystals with modulations of both permittivity and permeability. Phys. Rev. A, 93, 063813(2016).

    [40] N. Chamanara, Z. L. Deck-Léger, C. Caloz, D. Kalluri. Unusual electromagnetic modes in space-time-modulated dispersion-engineered media. Phys. Rev. A, 97, 063829(2018).

    [41] H. Nassar, X. C. Xu, A. N. Norris, G. L. Huang. Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J. Mech. Phys. Solids, 101, 10-29(2017).

    [42] E. Riva, J. Marconi, G. Cazzulani, F. Braghin. Generalized plane wave expansion method for non-reciprocal discretely modulated waveguides. J. Sound Vib., 449, 172-181(2019).

    [43] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [44] S. Qin, Q. Xu, Y. E. Wang. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Tech., 62, 2260-2272(2014).

    [45] D. Correas-Serrano, J. S. Gomez-Diaz, D. L. Sounas, Y. Hadad, A. Alvarez-Melcon, A. Alu. Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wireless Propag. Lett., 15, 1529-1532(2016).

    [46] T. T. Koutserimpas, R. Fleury. Nonreciprocal gain in non-Hermitian time-Floquet systems. Phys. Rev. Lett., 120, 087401(2018).

    [47] B. H. Eom, P. K. Day, H. G. LeDuc, J. Zmuidzinas. A wideband, low-noise superconducting amplifier with high dynamic range. Nat. Phys., 8, 623-627(2012).

    [48] K. O’Brien, C. Macklin, I. Siddiqi, X. Zhang. Resonant phase matching of Josephson junction traveling wave parametric amplifiers. Phys. Rev. Lett., 113, 157001(2014).

    [49] C. Macklin, K. O’brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, I. Siddiqi. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science, 350, 307-310(2015).

    [50] L. Planat, A. Ranadive, R. Dassonneville, J. Puertas Martínez, S. Léger, C. Naud, O. Buisson, W. Hasch-Guichard, D. M. Basko, N. Roch. Photonic-crystal Josephson traveling-wave parametric amplifier. Phys. Rev. X, 10, 021021(2020).

    Seojoo Lee, Jagang Park, Hyukjoon Cho, Yifan Wang, Brian Kim, Chiara Daraio, Bumki Min. Parametric oscillation of electromagnetic waves in momentum band gaps of a spatiotemporal crystal[J]. Photonics Research, 2021, 9(2): 142
    Download Citation