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Photonic crystals have revolutionized the field of optics with their unique dispersion and energy band gap en-
gineering capabilities, such as the demonstration of extreme group and phase velocities, topologically protected
photonic edge states, and control of spontaneous emission of photons. Time-variant media have also shown dis-
tinct functionalities, including nonreciprocal propagation, frequency conversion, and amplification of light.
However, spatiotemporal modulation has mostly been studied as a simple harmonic wave function. Here, we
analyze time-variant and spatially discrete photonic crystal structures, referred to as spatiotemporal crystals.
The design of spatiotemporal crystals allows engineering of the momentum band gap within which parametric
amplification can occur. As a potential platform for the construction of a parametric oscillator, a finite-sized
spatiotemporal crystal is proposed and analyzed. Parametric oscillation is initiated by the energy and momentum
conversion of an incident wave and the subsequent amplification by parametric gain within the momentum band
gap. The oscillation process dominates over frequency mixing interactions above a transition threshold deter-
mined by the balance between gain and loss. Furthermore, the asymmetric formation of momentum band gaps
can be realized by spatial phase control of the temporal modulation, which leads to directional radiation of os-
cillations at distinct frequencies. The proposed structure would enable simultaneous engineering of energy and
momentum band gaps and provide a guideline for implementation of advanced dispersion-engineered parametric
oscillators. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.406215

1. INTRODUCTION

Since the discovery of photonic crystals (PCs) that support en-
ergy band gaps (EBGs) [1,2], the design of materials with pho-
tonic band structures has led to the realization of test platforms
for fundamental physics and broad engineering applications
[3]. These advancements can be clearly seen in the observation
of exotic light propagation characteristics, such as the realiza-
tion of left-handed materials [4], extreme group and phase
velocities [5,6], and topologically protected photonic edge
states [7,8]. In addition, the EBGs in PCs have been utilized
to create integrated and miniaturized photonic platforms for
manipulating the flow of light [9]. Within the frequency range
of photonic EBGs, photons are localized in the defective region
of spatially periodic structures due to the absence of available
photonic states in the surroundings. The ability to confine pho-
tons on a wavelength scale has been exploited in diverse areas of

physics and engineering, especially for enhancing spontaneous
emission of photons [1,2,10], implementing micro/nanolasers
[11,12], boosting optical nonlinear effects [13,14], and devel-
oping photonic crystal fibers [15] and on-chip photonic inte-
grated circuits [16–18].

In line with the diverse research activities on PCs, time-
variant media have been investigated due to their distinct
functionalities, such as nonreciprocal propagation, frequency
conversion, Floquet engineering, and light amplification
[19–28]. Among these, one of the most significant develop-
ments is the observation of nonreciprocal wave propagation
in media with traveling-wave-like spatiotemporal modulation.
In such media, an asymmetrical band structure can be formed
with respect to reversal of a wavevector, and this asymmetry
makes it possible to observe the nonreciprocal propagation
of waves [19–23]. Furthermore, spatiotemporal modulation
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can modify not only the symmetry of band structures but also
their topological properties. For example, warping of the band
structure by spatiotemporal modulation can change the Chern
number of bands, allowing the observation of Floquet topologi-
cal insulators [24,25] and the modulation-induced anomalous
Hall effect [26,27]. All these advancements indicate that spa-
tiotemporal modulation of media has the potential to provide
an unprecedented approach to designing band structures for
photons, phonons, and potentially electrons.

Compared with spatially periodic PCs, a completely distinct
dispersion relation has been predicted for media with a tempo-
rally periodic property [29–31]. In these media, momentum
band gaps (MBGs) can be opened, leading to parametric am-
plification of electromagnetic waves. The concept of MBGs
dates back to the 1960s; in the seminal work by Cassedy
[32,33], traveling-wave-type permittivity modulation was con-
sidered for an otherwise spatially homogeneous medium.
Particularly, it was shown that MBGs emerge when a medium
is modulated in the form of a simple harmonic wave at a super-
luminal phase velocity, and unstable solutions of exponentially
growing and decaying oscillatory waves with complex-valued
frequencies exist [34,35]. Since then, discussions have been ex-
tended to take into account more complicated cases of a slab
with finite thickness [36–39], intrinsically dispersive media
[40], and even phononic lattices [23,41]. These early works
showed that MBGs are opened when positive-frequency and
negative-frequency branches of an unmodulated dispersion
curve are coupled via the modulating harmonic wave.

Previously, the properties of time-variant media were inves-
tigated mostly for cases in which the spatiotemporal modula-
tion was in the form of a simple harmonic wave. However, such
an assumption is inadequate for the description of potential
configurations with sophisticated spatial structures. Here we
generalize the analysis to include spatiotemporal crystals
(SCs), i.e., time-variant media with PC-like spatial structures,
by considering multiple spatial frequencies of the spatiotempo-
ral modulation. This generalization allows us to take full advan-
tage of the dispersion engineering capability in PCs, as well as
the additional degree of freedom from spatiotemporal modu-
lation. Therefore, the design of SCs makes it possible to engi-
neer the MBG within which parametric amplification occurs.
As a platform for the construction of a parametric oscillator, a
finite-sized SC is proposed and analyzed. The SC is composed
of a one-dimensional array of thin slabs with temporally peri-
odically modulated permittivity. Characterization of the finite-
sized SC reveals that parametric oscillation is observed when a
transition threshold is reached by increasing the normalized
permittivity variation. Furthermore, spatial phase control of
the temporal modulation leads to asymmetric formation of
MBGs and directional radiation of oscillations at distinct
frequencies from the finite-sized spatiotemporal crystal.

2. OPENING OF A MOMENTUM BAND GAP
IN SCS

A. Mode Evolution in SCs
To understand the mechanism of parametric amplification in
SCs, we first consider a one-dimensional PC structure consist-
ing of an array of unit cells with time-invariant permittivity.

Specifically, each unit cell is composed of a layer of a dielectric
material with a (relative) permittivity of ε � 25 and a spacing
layer filled with air with a relative permittivity of ε � 1
[Fig. 1(a)]. Here the thickness of a unit cell in the PC is denoted
by Λ. For a linear and lossless PC exhibiting continuous trans-
lational symmetry in time, the electric field of a launched PC
eigenmode oscillates sinusoidally in time [its time-resolved
spectral amplitude is plotted along with the dispersion diagram
of the PC in Fig. 1(b)]. Now let us consider the case where a
temporal permittivity modulation is applied to all slabs in
phase, i.e., ε�t� � εc � Δε cos�2πfmt�. This type of temporal
modulation can be regarded as a limiting case of traveling-wave-
like modulation, which will be considered in the last section. In
this example, the normalized permittivity variation Δε∕εc is
assumed to be 0.6. When the modulation frequency is twice
the frequency of a launched PC eigenmode, the field amplitude
of the launched PC eigenmode grows parametrically in time
[Figs. 1(c) and 1(d)]. Note that the frequency axes are normal-
ized to the modulation frequency in Figs. 1(b) and 1(d). In the
right panel of Fig. 1(d), the PC dispersion curve is schemati-
cally drawn along with its temporally scattered bands, assuming
no interaction between the modes at the crossings. Depending
on the mode order and the mixing order, the original and

Fig. 1. Spatiotemporal field evolution of the lowest-order PC mode.
(a) Permittivity profile in space-time for a time-invariant PC, and spa-
tiotemporal electric field distribution of a lowest order PC eigenmode.
(b) Time-resolved spectral amplitude (left panel) and dispersion dia-
gram (right panel) of the time-invariant PC. The spectral amplitude is
invariant with respect to time (left panel). Note that the frequency axis
is normalized to the modulation frequency. (c) Permittivity profile in
space-time for an SC and spatiotemporal electric field distribution of
the lowest-order PC eigenmode. The originally launched PC eigen-
mode has evolved into a mode with growing intensity. (d) Time-
resolved spectral amplitude (left panel) and PC dispersion curve along
with its temporally scattered bands (right panel). Three major
frequency components are seen clearly in the left panel. The line color
and style represent the sign of the frequency and mixing order,
respectively.
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temporally scattered bands can be labeled with (m, s). Here the
sign of the mode order, m, denotes that of the modal frequency
(e.g., the positive- and negative-frequency lowest-order PC
modes are represented by m � �1). Similarly, the sign of
the mixing order, s, represents the direction of the frequency
shift. For ease of visualization, the mode and mixing orders
are limited to �2 and �3, respectively. As the mode can be
scattered by the temporal permittivity modulation in the SC,
we observe modal frequency conversion by integer multiples of
fm for the initially launched PC eigenmode. Simultaneously,
the parametric amplification process leads to growth of newly
generated modal field amplitudes. As shown in the next section
with dispersion curves of SCs, the peak oscillating frequencies
of the growing field, equal to odd integer multiples of half
the modulation frequency, correspond to the frequencies of
the MBGs.

B. Dispersion Diagrams of SCs
To illustrate the opening and engineering of MBGs in the SC,
we have calculated dispersion diagrams for four different modu-
lation frequencies (fm � f0, 3f0∕2, 5f0∕2, and 3f0, where f0
is the reference frequency) and compared them with that of a
time-invariant PC (Fig. 2). The dispersion curves drawn with
red lines (in the middle panels of Fig. 2) are calculated from a
spatiotemporal plane wave expansion method (ST-PWEM)
[42]. In the ST-PWEM, a space-time-dependent material
property is Fourier expanded in two dimensions into a series

of plane waves with multiple spatial and temporal frequencies.
This expansion allows us to capture all the Floquet–Bloch
modes in the SC, including modulation-induced frequency-
mixed (or temporally scattered) modes. When calculating
the band structure using the ST-PWEM, we kept the time-
harmonic terms to the seventh order. This procedure ensures
an acceptable accuracy while excluding high-harmonic fre-
quency-mixed modes for which the intensity would be negli-
gible in practical situations. To verify the dispersion relations
obtained from the ST-PWEM, two-dimensional Fourier-
transformed fields are numerically calculated with a commercial
finite element solver COMSOL, and the two results are directly
compared in the bottom panels of Fig. 2. As a reference, the
two lowest bands of the PC are plotted in Fig. 2(a), which
clearly shows the EBG between the lowest two modes of
the PC.

The periodic temporal modulation of the permittivity allows
the existence of additional temporally scattered modes. The
frequencies of these modes are shifted by integer multiples
of the modulation frequency from the original frequencies.
The collection of these additional modes is represented by
dispersion curves that are shifted with respect to that calculated
from a time-invariant PC. Consequently, the initial and all of
the shifted dispersion curves may intersect each other [as sche-
matically shown in the right panels of Fig. 1(d)]. Near the cross-
ings where mode coupling exists, the modes can repel each
other to create an MBG or an EBG. Note that in this paper,

Fig. 2. Dispersion diagrams of a PC and SCs. (a) Permittivity profile in space-time (top panel) and dispersion diagram of the PC. The two lowest
bands are clearly shown in the middle and bottom panels. (b) Permittivity profile in space-time and dispersion diagram of the SC modulated at
fm � f 0. Red lines are the dispersion curves calculated using the ST-PWEM. The lowest panels are the imaginary parts of the eigenfrequencies
corresponding to the MBGs denoted by A and B in the middle panel. The MBGs denoted by A and B are classified as (1, 0; −1, 1) and (1, 1; −1, 2),
respectively. (c) Permittivity profile in space-time and dispersion diagram of the SC modulated at fm � 3f 0∕2. The MBGs denoted by A and B are
classified as (1, 0; −2, 2) and (1, 0; −1, 1), respectively. (d) Permittivity profile in space-time and dispersion diagram of the SC modulated at
fm � 5f 0∕2. The MBG denoted by A is classified as (1, 0; −3, 2). For comparison, one of the EBGs is shown and denoted by B.
(e) Permittivity profile in space-time and dispersion diagram of the SC modulated at fm � 3f 0. The MBGs denoted by A and B are classified
as (1, 0; −2, 1) and (1, 0; −3, 2), respectively.

144 Vol. 9, No. 2 / February 2021 / Photonics Research Research Article



the term band gap is used to describe both band gaps and mode
gaps. Specifically, MBGs are observed when strongly interact-
ing modes in the dispersion curves have frequencies of opposite
signs [for example, see A and B in Fig. 2(b)], while EBGs are
observed when strongly interacting modes in the dispersion
curves have frequencies of the same sign [for example, see B
in Fig. 2(d)]. This is consistent with previous knowledge on
the conditions for band gap formation [35]. Superluminal
modulation mediates interactions between the modes with
frequencies of opposite signs, whereas subluminal modulation
mediates interactions between the modes with frequencies of
the same sign. The opening of EBGs or MBGs is clearly illus-
trated in the middle panels of Figs. 2(b)–2(d). Depending on
the Floquet–Bloch modes participating in the interaction, an
MBG can be labeled with (m1, s1; m2, s2). For example, the
MBGs denoted by A and B in Fig. 2(b) are formed as a result
of the interaction between the positive- and negative-frequency
lowest-order modes and are classified as (1, 0; −1, 1) and (1, 1;
−1, 2), respectively.

When considering only the lowest-order photonic band that
starts from the origin of the dispersion diagram, MBGs are gen-
erally located at odd integer multiples of half the modulation
frequency, which can be simply inferred from the axial sym-
metry of the lowest-order band of a PC with respect to reversal
of frequency. Because of the spatial periodicity, however, the
lowest-order photonic band deviates from the linear relation
with increasing wavenumber and exhibits zero group velocity
at the band edge �vg � ∂ω∕∂k → 0�. Therefore, over a certain
modulation frequency (i.e., fm > fc , where fc denotes the cut-
off frequency of the lowest-order PC band), the dispersiveness
of the lowest-order photonic band results in the absence of
MBGs at the odd integer multiples of half the modulation fre-
quency [for example, note the absence of an MBG at fm∕2 in
Fig. 2(d)]. Furthermore, the presence of higher-order photonic
bands in a PC leads to the formation of MBGs whose frequen-
cies cannot be expressed as odd integer multiples of half the
modulation frequency [for example, see the MBG denoted
by A in Figs. 2(c) and 2(d)]. The MBG frequencies are not
expressed as odd integer multiples of half the modulation fre-
quency when the following two conditions are satisfied:
(1) m1m2 < 0 and (2) jm1j ≠ jm2j. The first condition states
that the interacting modes should have frequencies of opposite
signs, which is a necessary condition for the formation of an
MBG. The second condition requires that the interacting
modes have different mode orders. In this case, the two inter-
acting modes generally do not form a standing wave and thus
create an MBG with nonzero group velocity [for example, see
the MBG denoted by A in Fig. 2(e)]. Exceptions may exist in
the case of accidental group velocity matching (vg ,m1

� −vg ,m2
);

for example, see the MBG formed at the edge of the Brillouin
zone denoted by B in Fig. 2(e).

Within the MBG, there exist two eigenfrequencies that are
complex conjugates of each other with the same real part (de-
scribing the MBG frequency); one of the two imaginary parts is
related to the parametric gain, while the other is related to the
loss. The imaginary eigenfrequency, which gives the parametric
gain within the MBG, is plotted below the bottom panels of
Fig. 2. The two-dimensional Fourier-transformed field shows

agglomerated spots within the MBG, which is related to the
exponentially growing field [for example, see the bottom panel
in Fig. 2(b)]. From the simulations, the width of the MBG and
the imaginary eigenfrequency are found to increase with the
normalized permittivity variation. When considered with the
radiative loss of a finite-sized SC, the parametric gain deter-
mines the transition threshold for oscillation.

C. Spatiotemporal Mode Field Profiles at the Edges
of MBGs
When an MBG is opened by the interaction between positive-
and negative-frequency modes of the same modal origin (i.e.,
m1 � −m2), the two interacting modes form a standing wave at
the MBG edge, analogous to the modes at PC band edges. This
standing wave is formed as a result of interference between the
two modes, both of which propagate with opposite phases and
group velocities. At the lower wavenumber edge [below the
MBG: A in Fig. 3(a)], the standing wave exhibits temporal field
antinodes when the temporally varying permittivity [Fig. 3(b)]
becomes minimized, while at the higher wavenumber edge
[above the MBG: B in Fig. 3(a)], the standing wave exhibits
temporal field nodes at the same instance. As predicted by
the dispersion curve [Fig. 3(a)] and confirmed partially by
the standing wave patterns shown in Figs. 3(c) and 3(d), the
group velocity becomes zero for the modes within this kind
of MBG.

3. SC-BASED PARAMETRIC OSCILLATOR

A. Emergence of Parametric Oscillations at the MBG
Up to this point, the characteristics of SCs have been analyzed
with an emphasis on the dispersion diagrams and the descrip-
tion of MBGs. In this and the next sections, the spectral and
temporal properties of finite-sized (or truncated) SCs will be
investigated. For a finite-sized SC, distinct spectral responses
are predicted depending on the value of the normalized
permittivity variation Δε∕εc . To illustrate this dependency,

Fig. 3. Spatiotemporal mode field profiles at the edges of an
MBG. (a) Dispersion diagram of the SC modulated at fm � f 0.
(b) Spatiotemporal permittivity profile of the PC unit cell used to cal-
culate the dispersion curves. The parameters are identical to those used
to calculate the dispersion curves in Fig. 2(b). (c) Numerically calcu-
lated spatiotemporal mode field profile at the lower wavenumber edge
of the MBG. (d) Numerically calculated spatiotemporal mode field
profile at the higher wavenumber edge of the MBG.
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we consider a finite-sized SC composed of N slabs of simulta-
neously time-varying permittivity [Fig. 4(a)]. In the simula-
tions, the modulation frequency for the slabs fm and the
frequency of the input wave f i are set to 2 GHz and
1.5 GHz, respectively. When the normalized permittivity varia-
tion remains smaller than a transition threshold �Δε∕εc �th,N ,
the frequency mixing between the input and modulating waves
is more pronounced such that mixing sidebands appear at
frequencies of �f i � pfm, where p denotes nonzero integers.
Here the transition threshold is defined as the value of Δε∕εc at
which the parametric gain is equal to the loss of the finite-sized
SC. Figures 4(b) and 4(c) show such mixing-dominated re-
gimes, where the field amplitudes of mixing components
exhibit polynomial growth with normalized permittivity varia-
tion. All the transmitted amplitude spectra shown in Figs. 4(b)
and 4(c) are obtained by taking the Fourier transform of the
transmitted electric field at the same elapsed time. In this mix-
ing-dominated regime, the MBG opening is narrow, and the
parametric gain is not sufficient to compensate for the radiative
loss of the finite-sized SC. Consequently, parametric oscilla-
tions at MBGs are not observed for a finite-sized SC below
the transition threshold.

Once the normalized permittivity variation becomes larger
than the transition threshold �Δε∕εc �th,N , the parametric oscil-
lation is initiated from the seed field, as the radiative loss of the
finite-sized SC is compensated by the parametric gain at MBG
frequencies. The seed field is generated from the transient evo-
lution of the input field in the SC. In realistic situations, the
seed field for parametric oscillation can also be provided by any
noise process. Because no intrinsic loss is assumed in these ex-
amples, the total loss is determined solely by the radiative loss of
the finite-sized SC. Qualitatively, the conclusions derived in
this paper are not affected by the addition of material loss
and dispersion. Above the transition threshold, the field ampli-
tudes at MBG frequencies grow exponentially with normalized
permittivity variation [see Fig. 4(b) for the finite-sized SC with
N � 8]. Similar tendencies are observed, but with a lower tran-
sition threshold, for the finite-sized SC with N � 10, as the
parametric gain tends to increase with the number of unit cells
in the finite-sized SC [Fig. 4(c)].

After the initial transient evolution of the input field, the
transmitted field can be decomposed into frequency mixing
and parametrically oscillating components. Specifically, the
exponentially growing field can be expanded asP

qaqe
2πgqt e−j2π��2q−1�∕2�fmt � c:c:, where gq describes the tem-

poral field growth rate. The transition from frequency mixing
to parametric oscillations can be clearly seen by plotting two-
dimensional maps of the temporal field growth rate gq at MBG
frequencies. These temporal field growth rates are plotted in

Fig. 4. Emergence of parametric oscillations at the MBG.
(a) Schematic of a finite-sized SC (left panel). The electric fields of
incident and transmitted waves are represented by Ei

!
and Et

!
, respec-

tively. The permittivities of constituting slabs are sinusoidally modu-
lated in phase (right panel). (b) Transmitted field amplitude spectra for
N � 8 plotted as a function of the normalized permittivity variation.
Two oscillating spectra are scaled to fit in the plot. (c) Transmitted
field amplitude spectra for N � 10 plotted as a function of the nor-
malized permittivity variation. Four oscillating spectra are scaled to fit
in the plot. The frequency of the input wave is set to 1.5 GHz for both
(b) and (c). (d) Temporal field growth rates as a function of the nor-
malized permittivity variation and the number of unit cells in the fi-
nite-sized SC. The temporal field growth rates are plotted for
frequencies corresponding to three MBGs at fm∕2, 3fm∕2, and 5fm∕2.

Fig. 5. Temporal evolution of frequency mixing and parametric os-
cillation. (a) Temporal evolution of the total transmitted field above
the transition threshold. Two characteristic parameters, t tp and g1, de-
scribe the temporal evolution of the total transmitted field. (b) Time-
resolved spectral amplitude of the total transmitted field above the
transition threshold. For this particular detuned input case
(Δf � f 0 − fm∕2 � 0.5 GHz), the temporal evolution of the total
transmitted field is initially dominated by frequency mixing but even-
tually governed by parametric oscillations. The tipping point time t tp
is nonzero for this case. (c) Tipping point time t tp, plotted as a func-
tion of the input frequency. In this example, the first MBG frequency
is 1.0 GHz. When the input frequency is tuned exactly to the first
MBG frequency, the tipping point time becomes zero. (d) The tem-
poral field growth rate g1 is shown to be independent of the input
frequency.
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Fig. 4(d) as a function of the normalized permittivity variation
and the number of unit cells, fromwhich the transition threshold
values can be determined. Below the transition threshold
�Δε∕εc �th,N , where the frequency mixing dominates, the tempo-
ral field growth rate is zero [blue shaded region in Fig. 4(d)].
Above the transition threshold, the transmitted field amplitude
grows exponentially in time, with major frequency components
associated with the MBGs. From the mapping, several observa-
tions can be made: (1) the transition threshold tends to decrease
with the number of unit cells, (2) the rises and falls in the tran-
sition threshold with the number of unit cells are related to the
change in the spatial mode overlap with the structure, and (3) the

temporal field growth rate increases monotonically with the nor-
malized permittivity variation above the transition threshold.

B. Temporal Evolution of Parametric Oscillations
Above the transition threshold, the temporal evolution of the
transmitted field can be characterized by two major character-
istic parameters. As seen in Fig. 5(a), the transmitted field am-
plitude (normalized to the input field amplitude) remains
nearly constant for a period of time t < t tp, where t tp is the
first characteristic parameter describing a tipping point time.
During this initial period of time, the frequency mixing is more
pronounced than the parametric oscillations initiated from the

Fig. 6. Asymmetric formation of MBGs and direction-dependent radiation of oscillations. (a) Permittivity profile in space-time (top panel) and
dispersion diagrams (middle and bottom panels) of the SC modulated at fm � f 0 and K � −2π∕8Λ. Red lines in the middle panel are calculated
using the ST-PWEM. The mixing order is limited up to�2. The MBGs denoted by A and B can be labeled with (1, 0; −1, 1;�) and (1, 0; −1, 1; −),
respectively. The two-dimensional Fourier-transformed field is plotted in the bottom panel. The scattering by the traveling-wave-type modulation is
represented by the yellow arrow. (b) Permittivity profile in space-time (top panel) and dispersion diagrams (middle and bottom panels) of the SC
with K � 2π∕8Λ. (c) Permittivity profile in space-time (top panel) and dispersion diagrams (middle and bottom panels) of the SC with
K � −2π∕4Λ. (d) Permittivity profile in space-time (top panel) and dispersion diagrams (middle and bottom panels) of the SC with
K � 2π∕4Λ. (e) Temporal evolution of the field radiated from the input and output facets of the finite-sized SC (N � 56). (f ) Amplitude spectra
of the forward and backward radiating fields from the finite-sized SC.
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seed field [Figs. 5(a) and 5(b)]. When the parametrically oscil-
lating field becomes larger than the transmitted input field and
frequency mixing components (t > t tp), the temporal evolution
of the total transmitted field is dominated by the parametric os-
cillation at MBG frequencies. For this particular example, the
oscillating field at the first MBG is considerably larger than those
at the other MBGs. Correspondingly, the temporal field growth
rate g1 (the second characteristic parameter) determines the
temporal evolution of the total transmitted field for t > t tp
[Figs. 5(a) and 5(d)]. These two characteristic parameters are
plotted as a function of the input frequency detuning from
the first MBG frequency [Figs. 5(c) and 5(d)]. As can be seen,
the tipping point time is a sensitive function of the input fre-
quency detuning [Fig. 5(c)], which is due to the generation
and growth of the seed field. When the input frequency is tuned
exactly to the MBG frequency, the input field acts instantane-
ously as a seed field, so the total transmitted field grows expo-
nentially without any plateau in the temporal evolution. As the
temporal field growth rate is determined by the parametric gain
and radiative loss of the finite-sized SC, the second characteristic
parameter, g1, is independent of the input frequency detuning.
In more realistic cases where saturation and nonlinear effects ex-
ist, the growth of the total transmitted field will not be main-
tained indefinitely, and more careful consideration should be
given to the steady-state behavior of the parametric oscillation.

4. DIRECTION-DEPENDENT PARAMETRIC
OSCILLATION

In the previous sections, we considered the case where a tem-
poral permittivity modulation is applied to all slabs in phase.
However, with spatial phase control of the temporal modula-
tion, the dispersion relations can be diversified even more. For
example, by employing a traveling-wave-like modulation, we
can observe asymmetric formation of MBGs with respect to
reversal of a wavevector and hence direction-dependent radia-
tion of parametric oscillations. These behaviors can be under-
stood by analyzing the dispersion diagrams of SCs with
traveling-wave-like modulation. For illustration of asymmetric
MBG formation, the spatiotemporal permittivity variation of
the nth slab is assumed to be in the form of εn�t� �
εc � Δε cos�nKΛ − 2πfmt�, where K is a variable proportional
to the spatial (angular) modulation frequency [see the top pan-
els of Figs. 6(a)–6(d)]. In these examples, four different spatial
(angular) modulation frequencies (corresponding to the values
of K � �2π∕8Λ, �2π∕4Λ) are chosen, while the temporal
modulation frequency is fixed at fm � f 0 � 2 GHz. As con-
firmed in Figs. 6(a)–6(d), the temporally scattered bands, as
well as the MBGs, are asymmetrically positioned with respect
to reversal of a wavevector. As a result, the frequencies of para-
metric oscillations become direction dependent. Similar to the
case where the temporal permittivity modulation is in phase for
each of the slabs, MBGs can be labeled with (m1, s1;m2, s2;�).
Here � denotes the sign of wavevector at which the MBG is
formed. For example, the MBGs denoted by A and B in
Fig. 6(a) can be labeled with (1, 0; −1, 1; �) and (1, 0; −1,
1; −), respectively. It is also interesting to note that in the case
of traveling-wave-like modulation, the group velocity generally
does not vanish even for the MBG formed by the interaction of

modes of the same modal origin. To demonstrate direction-de-
pendent parametric oscillation, a finite-sized SC (N � 56,
K � 2π∕4Λ) with traveling-wave-like modulation is consid-
ered in the following simulations. Here the normalized permit-
tivity variation Δε∕εc is set to 0.2, which is larger than the
transition threshold. Figure 6(e) shows the temporal evolution
of the field radiated from the input and output facets of the
finite-sized SC. The major frequency components of the
exponentially growing field are dependent on the direction
of radiation, which can be confirmed from the field amplitude
spectra shown in Fig. 6(f ). It should be mentioned that the
direction-dependent parametric oscillations are closely linked
to the nonreciprocal transmission of waves via spatiotemporal
modulation, which originates from the formation of directional
symmetry-broken EBG/MBGs [21,35,43–46].

5. DISCUSSION

SCs are a special type of PC that can be constructed by imple-
menting temporal permittivity variation in PCs. SCs are char-
acterized by richer dispersion characteristics and distinctive
functionalities compared to PCs. The most intriguing features
of time-variant media such as SCs are the formation of MBGs
and the observation of parametric oscillations. Compared with
time-variant media modulated in the form of a simple har-
monic wave, the design of SCs makes it possible to engineer
the properties of MBGs within which parametric amplification
occurs. For example, the position, width, and slope of an MBG
can be predicted by band structure analysis, such as the
ST-PWEM and numerical simulations. Based on the under-
standing of MBG formation in SCs, we have shown that a
finite-sized SC can be configured as a parametric oscillator. The
characterization of finite-sized SCs shows that the transition
from frequency mixing to parametric oscillation occurs above
the transition threshold determined by the normalized permit-
tivity variation and the number of unit cells. When combined
with the traveling-wave-like modulation, the MBGs are asym-
metrically positioned with respect to reversal of a wavevector,
and direction-dependent frequencies of parametric oscillations
observed. With the added temporal controllability, the pro-
posed structure would enable simultaneous engineering
of energy and MBGs and provide a guideline for implementa-
tion of advanced dispersion-engineered parametric oscilla-
tors [47–50].
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