• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516015 (2022)
Ting Liu1、3、4, Yaowei Li1、3、4, Shixun Dai1、3、4, Xunsi Wang1、3、4, Pengfei Wang2, and Peiqing Zhang1、3、4、*
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang , China
  • 2School of Science, Harbin Engineering University, Harbin 150006, Heilongjiang , China
  • 3Zhejiang Key Laboratory of Photoelectric Detection Materials and Devices, Ningbo 315211, Zhejiang , China
  • 4Zhejiang Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices, Ningbo 315211, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516015 Cite this Article Set citation alerts
    Ting Liu, Yaowei Li, Shixun Dai, Xunsi Wang, Pengfei Wang, Peiqing Zhang. Research Progress on Fabrication and Application of Mid-Infrared Glass Fiber Gratings[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516015 Copy Citation Text show less
    References

    [1] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication[J]. Applied Physics Letters, 32, 647-649(1978).

    [2] Toth L M, Quist A S, Boyd G E. Raman spectra of zirconium(IV) fluoride complex ions in fluoride melts and polycrystalline solids[J]. The Journal of Physical Chemistry, 77, 1384-1388(1973).

    [3] Mori A. Tellurite-based fibers and their applications to optical communication networks[J]. Journal of the Ceramic Society of Japan, 116, 1040-1051(2008).

    [4] Aggarwal I D, Sanghera J S. Development and applications of chalcogenide glass optical fibers at NRL[J]. Journal of Optoelectronic Advvanced Materials, 4, 665-678(2002).

    [5] Jia Z X, Guo X H, Jia Y D et al. Progress on mid-infrared raman lasers based on special glass fibers[J]. Chinese Journal of Lasers, 49, 0101004(2022).

    [6] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 14, 823-825(1989).

    [7] Hill K O, Malo B, Bilodeau F et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 62, 1035-1037(1993).

    [8] Vengsarkar A M, Lemaire P J, Judkins J B et al. Long-period fiber gratings as band-rejection filters[J]. Journal of Lightwave Technology, 14, 58-65(1996).

    [9] Taunay T, Niay P, Bernage P et al. Ultraviolet-induced permanent Bragg gratings in cerium-doped ZBLAN glasses or optical fibers[J]. Optics Letters, 19, 1269-1271(1994).

    [10] Saad M, Chen L R, Gu X J. Highly reflective fiber Bragg gratings inscribed in Ce/Tm co-doped ZBLAN fibers[J]. IEEE Photonics Technology Letters, 25, 1066-1068(2013).

    [11] Bernier M, Faucher D, Vallée R et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm[J]. Optics Letters, 32, 454-456(2007).

    [12] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).

    [13] Fortin V, Bernier M, Bah S T et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 40, 2882-2885(2015).

    [14] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [15] Maes F, Stihler C, Pleau L P et al. 3.42 µm lasing in heavily-erbium-doped fluoride fibers[J]. Optics Express, 27, 2170-2183(2019).

    [16] Hudson D D, Williams R J, Withford M J et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 38, 2388-2390(2013).

    [17] Bharathan G, Woodward R I, Ams M et al. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers[J]. Optics Express, 25, 30013-30019(2017).

    [18] Goya K, Matsukuma H, Uehara H et al. Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution[J]. Optics Express, 26, 33305-33313(2018).

    [19] Xiong X W, Chen S P, Zhu H T et al. High reflectivity mid-infrared fiber Bragg grating by femtosecond laser direct inscription method[J]. Chinese Journal of Lasers, 49, 0101014(2022).

    [20] Huang F F, Liu X Q, Ma Y Y et al. Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations[J]. Scientific Reports, 5, 8233(2015).

    [21] Huang F F, Liu X Q, Hu L L et al. Spectroscopic properties and energy transfer parameters of Er3+- doped fluorozirconate and oxyfluoroaluminate glasses[J]. Scientific Reports, 4, 5053(2014).

    [22] Huang F F, Ma Y Y, Li W W et al. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3[J]. Scientific Reports, 4, 3607(2014).

    [23] Wang S B, Li C Z, Yao C F et al. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for ∼1.2 μm laser applications[J]. Optical Materials, 64, 421-426(2017).

    [24] Yao C F, He C F, Jia Z X et al. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing[J]. Optics Letters, 40, 4695-4698(2015).

    [25] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).

    [26] Tanaka K, Toyosawa N, Hisakuni H. Photoinduced Bragg gratings in As2S3 optical fibers[J]. Optics Letters, 20, 1976-1978(1995).

    [27] Meneghini C, Villeneuve A. As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides[J]. Journal of the Optical Society of America B, 15, 2946-2950(1998).

    [28] Brawley G A, Ta’eed V G, Bolger J A et al. Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method[J]. Electronics Letters, 44, 846(2008).

    [29] Ahmad R, Rochette M, Baker C. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires[J]. Optics Letters, 36, 2886-2888(2011).

    [30] Zou L E, He P P, Fu J W et al. Fabrication of Bragg gratings in low-loss As2S3 chalcogenide fibers using +1/-1 phase mask and 532 nm laser[J]. Acta Photonica Sinica, 46, 0706001(2017).

    [31] Cai D W, Xie Y, Wang P et al. Mid-infrared microfiber Bragg gratings[J]. Optics Letters, 45, 6114-6117(2020).

    [32] Florea C, Sanghera J S, Aggarwal I D. Direct-write gratings in chalcogenide bulk glasses and fibers using a femtosecond laser[J]. Optical Materials, 30, 1603-1606(2008).

    [33] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [34] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).

    [35] Masselin P, le Coq D, Bychkov E. Refractive index variations induced by femtosecond laser direct writing in the bulk of As2S3 glass at high repetition rate[J]. Optical Materials, 33, 872-876(2011).

    [36] Pudo D, Mägi E C, Eggleton B J. Long-period gratings in chalcogenide fibers[J]. Optics Express, 14, 3763-3766(2006).

    [37] Nguyen H C, Yeom D I, Mägi E C et al. Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching[J]. Applied Physics Letters, 92, 101127(2008).

    [38] Fujiwara T, Nakamoto T, Honma T et al. Refractive index change induced by ultraviolet laser irradiations in erbium-doped tellurite glasses[J]. Electronics Letters, 39, 1576-1577(2003).

    [39] Suo R, Lousteau J, Li H X et al. Fiber Bragg gratings inscribed using 800 nm femtosecond laser and a phase mask in single- and multi-core mid-IR glass fibers[J]. Optics Express, 17, 7540-7548(2009).

    [40] Shi J D, Alam S U, Ibsen M. Highly efficient Raman distributed feedback fibre lasers[J]. Optics Express, 20, 5082-5091(2012).

    [41] Behzadi B, Aliannezhadi M, Hossein-Zadeh M et al. Design of a new family of narrow-linewidth mid-infrared lasers[J]. Journal of the Optical Society of America B, 34, 2501-2513(2017).

    [42] Tao G M, Ebendorff-Heidepriem H, Stolyarov A M et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379-458(2015).

    [43] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [44] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [45] Brierley M C, France P W. Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre[J]. Electronics Letters, 24, 935-937(1988).

    [46] Xu C J, Zhang J Q, Liu M et al. Midinfrared laser in Ho3+-doped ZBYA glass fiber[J]. Chinese Journal of Lasers, 49, 0101016(2022).

    [47] Többen H. Room temperature cw fibre laser at 3.5 μm in Er3+-doped ZBLAN glass[J]. Electronics Letters, 28, 1361-1362(1992).

    [48] Henderson-Sapir O, Munch J, Ottaway D J. Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping[J]. Optics Letters, 39, 493-496(2014).

    [49] Fortin V, Maes F, Bernier M et al. Watt-level erbium-doped all-fiber laser at 3.44 μm[J]. Optics Letters, 41, 559-562(2016).

    [50] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [51] Jobin F, Fortin V, Maes F et al. Gain-switched fiber laser at 3.55 μm[J]. Optics Letters, 43, 1770-1773(2018).

    [52] Schneider J. Fluoride fibre laser operating at 3.9 µm[J]. Electronics Letters, 31, 1250-1251(1995).

    [53] Schneide J, Carbonnier C, Unrau U B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength[J]. Applied Optics, 36, 8595-8600(1997).

    [54] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [55] Li J F, Luo H Y, Wang L L et al. Tunable Fe2+: ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm[J]. Optics Express, 23, 22362-22370(2015).

    [56] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiber laser[J]. Optics Letters, 41, 2173-2176(2016).

    [57] Woodward R I, Majewski M R, Bharathan G et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency[J]. Optics Letters, 43, 1471-1474(2018).

    [58] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fier[J]. Optics Letters, 43, 1926-1929(2018).

    [59] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [60] Sanghera J S, Florea C M, Shaw L B et al. Non-linear properties of chalcogenide glasses and fibers[J]. Journal of Non-Crystalline Solids, 354, 462-467(2008).

    [61] Abedin K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 13, 10266-10271(2005).

    [62] Thielen P A, Shaw L B, Pureza P C et al. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 28, 1406-1408(2003).

    [63] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 88, 221106(2006).

    [64] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [65] Peng X F, Zhang P Q, Wang X S et al. Modeling and simulation of a mid-IR 4.3 µm Raman laser in chalcogenide glass fibers[J]. OSA Continuum, 2, 2281-2292(2019).

    [66] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices[J]. Optical Materials, 3, 187-203(1994).

    [67] Mori A, Kobayashi K, Yamada M et al. Low noise broadband tellurite-based Er3+-doped fibre amplifiers[J]. Electronics Letters, 34, 887-888(1998).

    [68] Mori A, Masuda H, Shikano K et al. Ultra-wideband tellurite-based Raman fibre amplifier[J]. Electronics Letters, 37, 1442-1443(2001).

    [69] Qin G S, Liao M S, Suzuki T et al. Widely tunable ring-cavity tellurite fiber Raman laser[J]. Optics Letters, 33, 2014-2016(2008).

    [70] Zhu G W, Geng L X, Zhu X S et al. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber[J]. Optics Express, 23, 7559-7573(2015).

    [71] Li Z R, Jia Z X, Yao C F et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers[J]. Optics Letters, 45, 1882-1885(2020).

    [72] Littler I C M, Fu L B, Mägi E C et al. Widely tunable, acousto-optic resonances in chalcogenide As2Se3 fiber[J]. Optics Express, 14, 8088-8095(2006).

    [73] Yang D D, Zhang P Q, Zeng J H et al. SRI-immune highly sensitive temperature sensor of long-period fiber gratings in Ge-Sb-Se chalcogenide fibers[J]. Journal of Lightwave Technology, 35, 3974-3979(2017).

    [74] Zhang Q, Zeng J H, Zhu L et al. Temperature sensors based on multimode chalcogenide fibre Bragg gratings[J]. Journal of Modern Optics, 65, 830-836(2018).

    [75] Wang L L, Ma W Q, Zhang P Q et al. Design and analysis of long-period fiber gratings in tapered multimode chalcogenide glass fiber for temperature measurement[J]. Journal of the Optical Society of America B, 36, 1792-1798(2019).

    [76] She L, Qi Q Y, Zhang P Q et al. Mid-infrared fluoroindate glass long-period fiber grating by femtosecond laser inscription[J]. Infrared Physics & Technology, 116, 103808(2021).

    [77] Heck M, Nolte S, Tünnermann A et al. Femtosecond-written long-period gratings in fluoride fibers[J]. Optics Letters, 43, 1994-1997(2018).

    [78] Uehara H, Konishi D, Goya K et al. Power scalable 30-W mid-infrared fluoride fiber amplifier[J]. Optics Letters, 44, 4777-4780(2019).

    Ting Liu, Yaowei Li, Shixun Dai, Xunsi Wang, Pengfei Wang, Peiqing Zhang. Research Progress on Fabrication and Application of Mid-Infrared Glass Fiber Gratings[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516015
    Download Citation