• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516015 (2022)
Ting Liu1、3、4, Yaowei Li1、3、4, Shixun Dai1、3、4, Xunsi Wang1、3、4, Pengfei Wang2, and Peiqing Zhang1、3、4、*
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, Institute of Advanced Technology, Ningbo University, Ningbo 315211, Zhejiang , China
  • 2School of Science, Harbin Engineering University, Harbin 150006, Heilongjiang , China
  • 3Zhejiang Key Laboratory of Photoelectric Detection Materials and Devices, Ningbo 315211, Zhejiang , China
  • 4Zhejiang Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices, Ningbo 315211, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516015 Cite this Article Set citation alerts
    Ting Liu, Yaowei Li, Shixun Dai, Xunsi Wang, Pengfei Wang, Peiqing Zhang. Research Progress on Fabrication and Application of Mid-Infrared Glass Fiber Gratings[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516015 Copy Citation Text show less
    Schematic diagram of fluoride fiber laser device. (a) Experimental setup of 30.5 W all-fiber laser operating at 2.94 µm[13]; (b) experimental setup of 41.6 W fluoride fiber laser operating at 2.82 µm[14]
    Fig. 1. Schematic diagram of fluoride fiber laser device. (a) Experimental setup of 30.5 W all-fiber laser operating at 2.94 µm[13]; (b) experimental setup of 41.6 W fluoride fiber laser operating at 2.82 µm[14]
    Fabrication process of chalcogenide fiber micro-FBG[31]. (a) Schematic diagram of grating fabrication device; (b) typical optical micrograph of imaging system during grating fabrication process; (c) optical microscope image and (d) SEM image of chalcogenide micro-FBG with diameter of 2.4 µm
    Fig. 2. Fabrication process of chalcogenide fiber micro-FBG[31]. (a) Schematic diagram of grating fabrication device; (b) typical optical micrograph of imaging system during grating fabrication process; (c) optical microscope image and (d) SEM image of chalcogenide micro-FBG with diameter of 2.4 µm
    Grating structures fabricated in chalcogenide glass bulk and fiber by femtosecond laser direct writing[32]
    Fig. 3. Grating structures fabricated in chalcogenide glass bulk and fiber by femtosecond laser direct writing[32]
    Schematic diagram of LPFG fabrication by mechanical stress device[36]
    Fig. 4. Schematic diagram of LPFG fabrication by mechanical stress device[36]
    Microscopic images of passive three-core tellurite FBG structures[39]. (a) Top view; (b) side view
    Fig. 5. Microscopic images of passive three-core tellurite FBG structures[39]. (a) Top view; (b) side view
    Structure of 3.55 µm all-fiber laser[50]
    Fig. 6. Structure of 3.55 µm all-fiber laser[50]
    Schematic diagram of 3.55 µm gain-switched fiber laser[51]
    Fig. 7. Schematic diagram of 3.55 µm gain-switched fiber laser[51]
    3.34 μm cascaded Raman laser based on As2S3 fiber and relationship between average laser output power and pump power[65]
    Fig. 8. 3.34 μm cascaded Raman laser based on As2S3 fiber and relationship between average laser output power and pump power[65]
    3.77 μm cascaded Raman fiber laser device based on As2S3 fiber grating[34]
    Fig. 9. 3.77 μm cascaded Raman fiber laser device based on As2S3 fiber grating[34]
    Schematic diagram of (a) first-order and (b) second-order Raman tellurite fiber lasers[71]
    Fig. 10. Schematic diagram of (a) first-order and (b) second-order Raman tellurite fiber lasers[71]
    LPFG stress sensor[76]. (a) Experimental setup; (b) transmission spectrum
    Fig. 11. LPFG stress sensor76. (a) Experimental setup; (b) transmission spectrum
    CompanyFiberlabsThorlabsLe Verre Fluoré
    TypeAlF3-basedZBLANZBLANInF3-basedZBLANInF3-based
    Transmission range /μm0.35-3.500.3-4.00.29-4.500.30-5.500.3-4.30.3-5.5
    Core refractive index1.461.51----
    Core diameter /μm2009996.516
    Numerical aperture0.220.16‒0.260.190.260.08‒0.350.2
    Typical loss /(dB·m-1

    <0.1@

    2.9 μm

    <0.1@1.5 μm

    0.3@4 μm

    <0.2 dB/m

    @2.3-3.6 μm

    <0.45 dB/m

    @3.2-4.6 μm

    ≤0.05 dB/m

    @0.3-3.4 μm

    ≤0.2 dB/m

    @3.4-4.0 μm

    Core diameter deviation /%<5.0<11.1<5.6<5.6--
    Table 1. Performance parameters of typical commercial fluoride fiber products
    Fluoride fiberYearInstitutionLaser wavelength /μmLaser power /mWReference
    Ho3+ doped ZBLAN fiber1995Brunswick University of Technology,Germany3.92152
    1997Brunswick University of Technology,Germany3.91153
    2011University of Sydney,Australia3.00277054
    2015University of Electronic Science and Technology of China2.9-333755
    Dy3+ doped ZBLAN fiber2016The University of Adelaide,Austrilia3.268056
    2018The University of Adelaide,Australia3.151.06×10357
    2016Laval University,Canada3.2410456
    Dy3+ doped InF3 fiber2018The University of Adelaide,Austrilia2.958058
    Ho3+ doped InF3 fiber2018Laval University,Canada3.9220059
    Table 2. Research status of rare earth doped fluoride glass fiber and 3-4 µm mid-infrared fiber laser output
    Ting Liu, Yaowei Li, Shixun Dai, Xunsi Wang, Pengfei Wang, Peiqing Zhang. Research Progress on Fabrication and Application of Mid-Infrared Glass Fiber Gratings[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516015
    Download Citation