• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0104002 (2024)
Lü Chaolin1、†,*, Lixing You1、2、†,**, Jian Qin1, Guangzhao Xu1, Yanyang Jiang1, and Jinghao Shi1
Author Affiliations
  • 1Photon Technology (Zhejiang) Co., Ltd., Jiaxing 314100, Zhejiang, China
  • 2National Key Laboratory of Materials for Integrated Circuits,Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.3788/LOP232429 Cite this Article Set citation alerts
    Lü Chaolin, Lixing You, Jian Qin, Guangzhao Xu, Yanyang Jiang, Jinghao Shi. Superconducting Single-Photon Detector and Its Applications in Biology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0104002 Copy Citation Text show less
    References

    [1] Testardi L R. Destruction of superconductivity by laser light[J]. Physical Review B, 4, 2189-2196(1971).

    [2] Kadin A M, Johnson M W. Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films[J]. Applied Physics Letters, 69, 3938-3940(1996).

    [3] Gol’tsman G N, Okunev O, Chulkova G et al. Picosecond superconducting single-photon optical detector[J]. Applied Physics Letters, 79, 705-707(2001).

    [4] Hu P, Li H, You L X et al. Detecting single infrared photons toward optimal system detection efficiency[J]. Optics Express, 28, 36884-36891(2020).

    [5] Liu Y, Zhang W J, Jiang C et al. Experimental twin-field quantum key distribution over 1000 km fiber distance[J]. Physical Review Letters, 130, 210801(2023).

    [6] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020).

    [7] Craiciu I, Korzh B, Beyer A D et al. High-speed detection of 1550 nm single photons with superconducting nanowire detectors[J]. Optica, 10, 183-190(2023).

    [8] You L X. Superconducting nanowire single-photon detectors for quantum information[J]. Nanophotonics, 9, 2673-2692(2020).

    [9] Zhang B, Chen Q, Guan Y Q et al. Research progress of photon response mechanism of superconducting nanowire single photon detector[J]. Acta Physica Sinica, 70, 198501(2021).

    [10] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications[J]. Superconductor Science and Technology, 25, 063001(2012).

    [11] Dauler E A, Grein M E, Kerman A J et al. Review of superconducting nanowire single-photon detector system design options and demonstrated performance[J]. Optical Engineering, 53, 081907(2014).

    [12] You L X, Li H, Zhang W J et al. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths[J]. Superconductor Science and Technology, 30, 084008(2017).

    [13] Marsili F, Verma V B, Stern J A et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 7, 210-214(2013).

    [14] Zhang W J, Jia Q, You L X et al. Saturating intrinsic detection efficiency of superconducting nanowire single-photon detectors via defect engineering[J]. Physical Review Applied, 12, 044040(2019).

    [15] Reddy D V, Nerem R R, Nam S W et al. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm[J]. Optica, 7, 1649-1653(2020).

    [16] Chang J, Los J W N, Tenorio-Pearl J O et al. Detecting telecom single photons with (99.5-2.07+0.5)% system detection efficiency and high time resolution[J]. APL Photonics, 6, 036114(2021).

    [17] Yang X Y, Li H, Zhang W J et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J]. Optics Express, 22, 16267-16272(2014).

    [18] Zhang W J, Yang X Y, Li H et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face[J]. Superconductor Science and Technology, 31, 035012(2018).

    [19] Yamashita T, Miki S, Qiu W et al. Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region[J]. Applied Physics Express, 3, 102502(2010).

    [20] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [21] Zhang W J, Huang J, Zhang C J et al. A 16-pixel interleaved superconducting nanowire single-photon detector array with a maximum count rate exceeding 1.5 GHz[J]. IEEE Transactions on Applied Superconductivity, 29, 2200204(2019).

    [22] Verma V B, Korzh B, Walter A B et al. Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors[J]. APL Photonics, 6, 056101(2021).

    [23] Pan Y M, Zhou H, Zhang X Y et al. Mid-infrared Nb4N3-based superconducting nanowire single photon detectors for wavelengths up to 10 µm[J]. Optics Express, 30, 40044-40052(2022).

    [24] Zhou H, Pan Y M, You L X et al. Superconducting nanowire single photon detector with efficiency over 60% for 2-μm-wavelength[J]. IEEE Photonics Journal, 11, 6804107(2019).

    [25] Chang J, Los J W N, Gourgues R et al. Efficient mid-infrared single-photon detection using superconducting NbTiN nanowires with high time resolution in a Gifford-McMahon cryocooler[J]. Photonics Research, 10, 1063-1070(2022).

    [26] China F, Yabuno M, Mima S et al. Highly efficient NbTiN nanostrip single-photon detectors using dielectric multilayer cavities for a 2-µm wavelength band[J]. Optics Express, 31, 20471-20479(2023).

    [27] Welsher K, Liu Z, Sherlock S P et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nature Nanotechnology, 4, 773-780(2009).

    [28] Xia F, Gevers M, Fognini A et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector[J]. ACS Photonics, 8, 2800-2810(2021).

    [29] Wang F F, Ren F Q, Ma Z R et al. In vivo non-invasive confocal fluorescence imaging beyond 1, 700 nm using superconducting nanowire single-photon detectors[J]. Nature Nanotechnology, 17, 653-660(2022).

    [30] Stevens M J, Hadfield R H, Schwall R E et al. Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector[J]. Applied Physics Letters, 89, 031109(2006).

    [31] Becker W, Korzh B, Berggren K. 4.4ps IRF width of TCSPC with an NbN superconducting nanowire single photon detector[EB/OL]. https://www.photonicsolutions.co.uk/upfiles/jpl-nbn-nanowire05.pdf

    [32] Yu J, Zhang R L, Gao Y F et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window[J]. Optics Letters, 45, 3305-3308(2020).

    [33] Buschmann V, Ermilov E, Koberling F et al. Integration of a superconducting nanowire single-photon detector into a confocal microscope for time-resolved photoluminescence (TRPL)-mapping: sensitivity and time resolution[J]. The Review of Scientific Instruments, 94, 033703(2023).

    [34] Magde D, Elson E, Webb W W. Thermodynamic fluctuations in a reacting system: measurement by fluorescence correlation spectroscopy[J]. Physical Review Letters, 29, 705-708(1972).

    [35] Yamashita T, Liu D K, Miki S et al. Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector[J]. Optics Express, 22, 28783-28789(2014).

    [36] Yamamoto J, Oura M, Yamashita T et al. Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector[J]. Optics Express, 23, 32633-32642(2015).

    [37] Niedre M, Patterson M S, Wilson B C. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo[J]. Photochemistry and Photobiology, 75, 382-391(2002).

    [38] Gemmell N R, McCarthy A, Liu B C et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector[J]. Optics Express, 21, 5005-5013(2013).

    [39] Tsimvrakidis K, Gemmell N R, Erotokritou K et al. Enhanced optics for time-resolved singlet oxygen luminescence detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7000107(2018).

    [40] Morozov P, Lukina M, Shirmanova M et al. Singlet oxygen phosphorescence imaging by superconducting single-photon detector and time-correlated single-photon counting[J]. Optics Letters, 46, 1217-1220(2021).

    [41] Jöbsis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 198, 1264-1267(1977).

    [42] Carp S A, Tamborini D, Mazumder D et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light[J]. Journal of Biomedical Optics, 25, 097003(2020).

    [43] Ozana N, Zavriyev A I, Mazumder D et al. Superconducting nanowire single-photon sensing of cerebral blood flow[J]. Neurophotonics, 8, 035006(2021).

    [44] Ozana N, Lue N, Renna M et al. Functional time domain diffuse correlation spectroscopy[J]. Frontiers in Neuroscience, 16, 932119(2022).

    [45] Poon C S, Langri D S, Rinehart B et al. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit[J]. Biomedical Optics Express, 13, 1344-1356(2022).

    [46] Parfentyeva V, Colombo L, Lanka P et al. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results[J]. Scientific Reports, 13, 11982(2023).

    [47] Vodolazov D. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach[J]. Physical Review Applied, 7, 034014(2017).

    [48] Xu G Z, Zhang W J, You L X et al. Superconducting microstrip single-photon detector with system detection efficiency over 90% at 1550 nm[J]. Photonics Research, 9, 958-967(2021).

    [49] Xu G Z, Zhang W J, You L X et al. Millimeter-scale active area superconducting microstrip single-photon detector fabricated by ultraviolet photolithography[J]. Optics Express, 31, 16348-16360(2023).

    [50] Wollman E E, Verma V B, Lita A E et al. Kilopixel array of superconducting nanowire single-photon detectors[J]. Optics Express, 27, 35279-35289(2019).

    [51] Zhao Q Y, Zhu D, Calandri N et al. Single-photon imager based on a superconducting nanowire delay line[J]. Nature Photonics, 11, 247-251(2017).

    [52] Yu S F, Zhang Z, Xia H Y et al. Photon-counting distributed free-space spectroscopy[J]. Light: Science & Applications, 10, 212(2021).

    [53] Li W, Zhang L K, Tan H et al. High-rate quantum key distribution exceeding 110 Mbs-1[J]. Nature Photonics, 17, 416-421(2023).

    [54] McCaughan A N. Readout architectures for superconducting nanowire single photon detectors[J]. Superconductor Science and Technology, 31, 040501(2018).

    [55] Oripov B G, Rampini D S, Allmaras J et al. A superconducting-nanowire single-photon camera with 400, 000 pixels[EB/OL]. https://arxiv.org/abs/2306.09473

    [56] Kotsubo V, Radebaugh R, Hendershott P et al. Compact 2.2 K cooling system for superconducting nanowire single photon detectors[J]. IEEE Transactions on Applied Superconductivity, 27, 9500405(2017).

    [57] Gemmell N R, Hills M, Bradshaw T et al. A miniaturized 4 K platform for superconducting infrared photon counting detectors[J]. Superconductor Science and Technology, 30, 11LT01(2017).

    [58] Dang H Z, Zhang T, Zhao B J et al. A hybrid cryocooler achieving 1.8 K with He-4 as the only working medium and its application verification[J]. Chinese Science Bulletin, 67, 896-905(2022).

    [59] Hu P, Ma Y X, Li H et al. Superconducting single-photon detector with a system efficiency of 93% operated in a 2.4 K space-application-compatible cryocooler[J]. Superconductor Science and Technology, 34, 07LT01(2021).

    [60] Charaev I, Bandurin D A, Bollinger A T et al. Single-photon detection using high-temperature superconductors[J]. Nature Nanotechnology, 18, 343-349(2023).

    Lü Chaolin, Lixing You, Jian Qin, Guangzhao Xu, Yanyang Jiang, Jinghao Shi. Superconducting Single-Photon Detector and Its Applications in Biology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0104002
    Download Citation