• Acta Optica Sinica
  • Vol. 38, Issue 6, 0606001 (2018)
Xiaomei Wang1、2, Chenfeng Yang1、2, Shixun Dai1、2、*, Yingying Wang1、2, Dong Xu1、2, and Chenyang You1、2
Author Affiliations
  • 1 Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo, Zhejiang 315211, China
  • show less
    DOI: 10.3788/AOS201838.0606001 Cite this Article Set citation alerts
    Xiaomei Wang, Chenfeng Yang, Shixun Dai, Yingying Wang, Dong Xu, Chenyang You. Spectroscopic Analysis of Ethanol Solution Detection with Ge15Sb20Se65 Chalcogenide Glass Tapered Fiber[J]. Acta Optica Sinica, 2018, 38(6): 0606001 Copy Citation Text show less
    References

    [1] Lucas P, Riley M R, Boussard-Pledel C et al. Advances in chalcogenide fiber evanescent wave biochemical sensing[J]. Analytical Biochemistry, 351, 1-10(2006). http://www.sciencedirect.com/science/article/pii/S0003269705007785

    [2] Sanghera J S, Kung F H, Pureza P C et al. Infrared evanescent-absorption spectroscopy with chalcogenide glass fibers[J]. Applied Optics, 33, 6315-6322(1994). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-33-27-6315&id=41706

    [3] Mizaikoff B. Mid-IR fiber-optic sensors[J]. Analytical Chemistry, 75, 258A-267A(2003). http://www.ncbi.nlm.nih.gov/pubmed/12948116

    [4] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 5, 141-148(2011).

    [5] Ying D M, Dai S X, Wang X S et al. Research process of infrared chalcogenide glass fibers in sensing fields[J]. Laser and Optoelectronics Process, 50, 020010(2013).

    [6] Compton D A C, Hill S L, Wright N A et al. . In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber[J]. Applied Spectroscopy, 42, 972-979(1988). http://www.opticsinfobase.org/abstract.cfm?uri=as-42-6-972

    [7] Heo J, Rodrigues M, Saggese S J et al. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers[J]. Applied Optics, 30, 3944-3951(1991). http://www.ncbi.nlm.nih.gov/pubmed/20706486

    [8] Rodrigues M, Sigel G H. Chalcogenide glass fibers for remote spectroscopic chemical sensing[C]. SPIE, 1591, 225-236(1992).

    [9] Maurugeon S, Bureau B, Boussard-Pledel C et al. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing[J]. Optical Materials, 33, 660-663(2011). http://www.sciencedirect.com/science/article/pii/S0925346710005380

    [10] Hocdé S, Boussard-Pledel C, Fonteneau G et al. Recent developments in chemical sensing using infrared glass fibers[J]. Journal of Non-Crystalline Solids, 274, 17-22(2000). http://www.sciencedirect.com/science/article/pii/S0022309300001794

    [11] Le Coq D, Michel K, Fonteneau G et al. Infrared chalcogen glasses: chemical polishing and fibre remote spectroscopy[J]. International Journal of Inorganic Materials, 3, 233-239(2001). http://www.sciencedirect.com/science/article/pii/S1466604901000071

    [12] Zhao M F, Jiao L Z, Dong D M et al. The analysis of sensitivity for evanescent wave sensors[J]. Piezoelectrics and Acoustoortics, 34, 23-26(2012).

    [13] Le Coq D, Michel K, Keirsse J et al. Infrared glass fibers for in-situ sensing,chemical and biochemical reactions[J]. Comptes Rendus Chimie, 5, 907-913(2002). http://www.sciencedirect.com/science/article/pii/S1631074802014522

    [14] Bureau B, Zhang X H, Smektala F et al. Recent advances in chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 345, 276-283(2004). http://www.sciencedirect.com/science/article/pii/S0022309304005642

    [15] Toupin P, Brilland L, Boussard-Pledel C et al. Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing[J]. Journal of Non-Crystalline Solids, 377, 217-219(2013). http://www.sciencedirect.com/science/article/pii/S0022309312007417

    [16] Bureau B, Boussard-Pledel C, Cui S et al. Chalcogenide optical fibers for mid-infrared sensing[J]. Optical Engineering, 53, 027101(2014).

    [17] MacDonald S, Michel K, Le Coq D et al. . Optical analysis of infrared spectra recorded with tapered chalcogenide glass fibers[J]. Optical Materials, 25, 171-178(2004). http://www.sciencedirect.com/science/article/pii/S0925346703002660

    [18] Dai S X, Chen F F, Xu Y S et al. Mid-infrared optical nonlinearities of chalcogenide glasses in Ge-Sb-Se ternary system[J]. Optics Express, 23, 1300-1307(2015). http://europepmc.org/abstract/MED/25835889

    [19] Luo B H, Wang Y Y, Sun Y N et al. Fabrication and characterization of bare Ge-Sb-Se chalcogenide glassfiber taper[J]. Infrared Physics and Technology, 80, 105-111(2017). http://www.sciencedirect.com/science/article/pii/S1350449516303371

    [20] Sanghera J S, Shaw L B, Busse L E et al. Infrared-transmitting fiber optics for biomedical applications[C]. SPIE, 3596, 178-188(1999).

    [21] Troles J, Shiryaev V, Churbanov M et al. GeSe4 glass fibres with low optical losses in the mid-IR[J]. Optical Materials, 32, 212-215(2009). http://www.sciencedirect.com/science/article/pii/S0925346709002298

    [22] Hocdé S, Boussard-Pledel C, Fonteneau G et al. Chalcogens based glasses for IR fiber chemical sensors[J]. Solid State Sciences, 3, 279-284(2001). http://www.sciencedirect.com/science/article/pii/S1293255800011353

    [23] Wang H, Zhou W C, Li K W et al. Label-free biosensing characteristics of micro/nano-fiber coupler[J]. Acta Optica Sinica, 37, 0306005(2017).

    [24] Fu X H, Zhang J P, Fang Y C et al. Tapered double-cladding fiber temperature sensor based on surface temperature sensitive thin-film[J]. Chinese Journal of Lasers, 44, 0810001(2017).

    Xiaomei Wang, Chenfeng Yang, Shixun Dai, Yingying Wang, Dong Xu, Chenyang You. Spectroscopic Analysis of Ethanol Solution Detection with Ge15Sb20Se65 Chalcogenide Glass Tapered Fiber[J]. Acta Optica Sinica, 2018, 38(6): 0606001
    Download Citation