• Acta Optica Sinica
  • Vol. 37, Issue 8, 0815002 (2017)
Jiandong Su1,*, Xiaohui Qi1, and Xiusheng Duan2
Author Affiliations
  • 1 1 Department of Unmanned Aerial Vehicles Engineering, Ordnance Engineering College, Shijiazhuang, Hebei 050003, China;
  • 2 2 Department of Optics and Electronics Engineering, Ordnance Engineering College, Shijiazhuang, Hebei 050003, China
  • show less
    DOI: 10.3788/AOS201737.0815002 Cite this Article Set citation alerts
    Jiandong Su, Xiaohui Qi, Xiusheng Duan. Plane Pose Measurement Method Based on Monocular Vision and Checkerboard Target[J]. Acta Optica Sinica, 2017, 37(8): 0815002 Copy Citation Text show less
    Sketch map of imaging of checkerboard target
    Fig. 1. Sketch map of imaging of checkerboard target
    Relationship between target coordinate system and world coordinate system in ideal situation
    Fig. 2. Relationship between target coordinate system and world coordinate system in ideal situation
    Relationship between target coordinate system and world coordinate system in actual situation
    Fig. 3. Relationship between target coordinate system and world coordinate system in actual situation
    Comparison of actual image corner and simulation image corner. (a) Actual image corner; (b) simulation image corner
    Fig. 4. Comparison of actual image corner and simulation image corner. (a) Actual image corner; (b) simulation image corner
    Experimental system of monocular vision pose measurement
    Fig. 5. Experimental system of monocular vision pose measurement
    Relationship between measurement precision and distance
    Fig. 6. Relationship between measurement precision and distance
    Error of dynamic measurement when distance is 3 m. (a) Measured reference value; (b) errors of outer frame; (c) errors of middle frame; (d) errors of inner frame
    Fig. 7. Error of dynamic measurement when distance is 3 m. (a) Measured reference value; (b) errors of outer frame; (c) errors of middle frame; (d) errors of inner frame
    Error of dynamic measurement when distance is 4.5 m. (a) Measured reference value; (b) errors of outer frame; (c) errors of middle frame; (d) errors of inner frame
    Fig. 8. Error of dynamic measurement when distance is 4.5 m. (a) Measured reference value; (b) errors of outer frame; (c) errors of middle frame; (d) errors of inner frame
    No.Input valueMeasured valueError
    θψϕθψϕθψϕ
    11230.992.053.01-0.010.050.01
    23693.015.979.030.01-0.030.03
    3510154.9710.0414.97-0.030.04-0.03
    4714217.0514.0421.020.050.040.02
    5918279.0518.0527.030.050.050.03
    Table 1. Results of simulation experiment(°)
    No.Input valueMeasured valueError
    θψϕθψϕθψϕ
    11231.000012.0000030.0000100
    23693.000015.9999990.00001-0.000010
    3510155.000019.99998150.00001-0.000020
    4714217.0000014.0000021000
    5918279.0000018.0000027000
    Table 2. Results of theoretical experiment(°)
    No.Standard valueMeasured valueError
    θψϕθψϕθψϕ
    15.0040.000.004.9739.950.01-0.03-0.050.01
    210.0030.0030.0010.0330.0430.020.030.040.02
    320.0020.0060.0020.0419.9860.010.04-0.020.01
    430.0010.00130.0029.969.96130.02-0.04-0.040.02
    540.000.00170.0040.050.03169.990.050.03-0.01
    Table 3. Static experimental results under different poses(°)
    No.ErrorNo.Error
    θψϕθψϕ
    10.020.02-0.006-0.020.03-0.00
    2-0.05-0.05-0.0070.020.02-0.00
    30.03-0.020.018-0.01-0.020.01
    40.040.040.0190.020.040.01
    50.02-0.01-0.0110-0.03-0.050.01
    Table 4. Static experimental results under same poses(°)
    Average errorMaximum absolute errorStandard deviation
    θ0.000.050.03
    ψ0.000.050.03
    ϕ0.000.010.01
    Table 5. Error distribution of static experimental results under same poses(°)