• Laser & Optoelectronics Progress
  • Vol. 59, Issue 11, 1100004 (2022)
Xiang Liu1、2, Jiao Zhang1、2、*, Min Zhu1、2、**, Bingchang Hua2, Yuancheng Cai1、2, Mingzheng Lei2, Yucong Zou2, and Aijie Li2
Author Affiliations
  • 1National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, Jiangsu , China
  • 2Purple Mountain Laboratories, Nanjing 211111, Jiangsu , China
  • show less
    DOI: 10.3788/LOP202259.1100004 Cite this Article Set citation alerts
    Xiang Liu, Jiao Zhang, Min Zhu, Bingchang Hua, Yuancheng Cai, Mingzheng Lei, Yucong Zou, Aijie Li. Research Status and Progress of Probabilistic Shaping Techniques in Optical Communication[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1100004 Copy Citation Text show less
    Capacity of the ideal AWGN channel with Gaussian inputs and with equiprobable M-PAM inputs[5]
    Fig. 1. Capacity of the ideal AWGN channel with Gaussian inputs and with equiprobable M-PAM inputs[5]
    16QAM probabilistic shaping. (a) 16QAM; (b) PS-16QAM
    Fig. 2. 16QAM probabilistic shaping. (a) 16QAM; (b) PS-16QAM
    Schematic diagram of PS-16QAM probabilistic shaping. (a) Probability distribution; (b) signal constellation
    Fig. 3. Schematic diagram of PS-16QAM probabilistic shaping. (a) Probability distribution; (b) signal constellation
    Basic framework of probabilistic shaping technology
    Fig. 4. Basic framework of probabilistic shaping technology
    System symbols and performance indicators[74-76]
    Fig. 5. System symbols and performance indicators[74-76]
    CCDM implementation block diagram [23]. (a) Principle block diagram; (b) schematic drawings
    Fig. 6. CCDM implementation block diagram [23]. (a) Principle block diagram; (b) schematic drawings
    PS-8ASK with three parameter values v
    Fig. 7. PS-8ASK with three parameter values v
    Effect of changing shaping factor v on GMI of transmitted and received symbols
    Fig. 8. Effect of changing shaping factor v on GMI of transmitted and received symbols
    Arithmetic coding probabilistic shaping scheme. (a) PAS scheme[24]; (b) PDM /MPDM scheme[49]; (c) 2D-DM scheme[56]
    Fig. 9. Arithmetic coding probabilistic shaping scheme. (a) PAS scheme[24]; (b) PDM /MPDM scheme[49]; (c) 2D-DM scheme[56]
    Influence degree of arithmetic coding probabilistic shaping scheme index
    Fig. 10. Influence degree of arithmetic coding probabilistic shaping scheme index
    Arithmetic coding PS performance parameter index comparison
    Fig. 11. Arithmetic coding PS performance parameter index comparison
    Performance chart[28]. (a) AIR and SNR; (b) FER and SNR
    Fig. 12. Performance chart[28]. (a) AIR and SNR; (b) FER and SNR
    Symbol-level labeling PS scheme. (a) Outer maps to the inner layer[64]; (b) set partition[60-61]
    Fig. 13. Symbol-level labeling PS scheme. (a) Outer maps to the inner layer[64]; (b) set partition[60-61]
    Schematic of probabilistic shaping based on symbol-level labeling[9]
    Fig. 14. Schematic of probabilistic shaping based on symbol-level labeling[9]
    Non-uniform signal designed for PS scheme. (a) Huffman code[66] ; (b) bisection-based [67]
    Fig. 15. Non-uniform signal designed for PS scheme. (a) Huffman code[66] ; (b) bisection-based [67]
    AC shaping schemeRef.CharacteristicShortcoming
    Serial structureCCDM23Lower complexity,asymptotically optimalHigh latency,rate loss
    PAS24Rate adaption,lower BERHigh complexity,rate loss
    Parallel structurePDM44High throughput,lower complexityA gap to the MB distribution
    MPDM49Flexible output composition,lower rate lossHigh hardware requirements
    MDDM56Approaching MB,multi-dimensionalHigh hardware requirements
    Table 1. Comparison of characteristics and shortcomings of AC probabilistic shaping scheme
    SignalRpsRfecη=mRpsRfec
    2m-ASKRdmm-1+γm-1+γm-1+γmRdmm-1+γ
    2m-QAMRdmm-2+2γm-2+2γm-2+2γmRdmm-2+2γ
    2m-NDRdmm-N+Nγm-N+Nγm-N+NγmRdmm-N+Nγ
    Table 2. PAS related parameter rate
    ConstellationRate /bitCapacity C SNR /dBUniform SNR /dBGap /dB

    XΩ

    SNR /dB

    Gap /dBShaping gain /dB
    4-ASK14.77125.11810.34694.81800.04680.3001
    8-ASK211.760912.61870.857811.84250.08160.7762
    16-ASK317.993419.16811.174718.09100.09761.0771
    32-ASK424.065425.41401.348624.17060.10521.2434
    64-ASK530.098831.53841.439630.20780.10901.3306
    Table 3. Gaps of uniform ASK and PS to capacity C
    Architecturekk/nH(A˜)/H(A¯)Rloss
    CCDM/PAS3671.69911.74900.0499
    3672.23782.31320.0754
    3676.79636.95230.1560
    MPDM3741.73151.74900.0175
    3742.22622.27270.0465
    3746.92596.99130.0654
    Sphere3741.73151.74590.0133
    3742.22622.24960.0234
    3746.92596.96840.0425
    Table 4. Rate loss under different block length n
    Optical fiber transmission system
    Ref.InstitutionSignalDistance /kmRateCharacteristic
    19University of Arizona8/16/32QAM10012.5 GbaudSuperior performance
    29Beijing University of Posts and TelecommunicationsPAM8228 Gb/sLow complexity and improve BER
    33Technical University of Munich16/64QAMB2B-Higher sensitivity gains and close to the gap to capacity
    34Huazhong University of Science and Technology256QAM7550.2 Gb/sSuperior net date rate and suitable for multicarrier systems
    71Fudan University32QAM1108.29 Gb/sBetter receiver sensitivity gain
    83Huaqiao UniversityPAM82016.8 GbaudFewer PS redundancy
    84Huawei Technologies/China Telecom Beijing Research Institute16QAM1142200 Gb/sReal-time and improve performance,energy-efficiency
    Table 5. Research of PS technology in optical fiber transmission system
    ROF transmission system
    Ref.InstitutionSignalDistance /mRate /(Gb·s-1Characteristic
    51Zhejiang University16QAM-OFDM20>100Ultrahigh data rate
    54Hunan University64QAM0.51.81Flexibility and small capacity granularity
    85Fudan University512QAM、128QAM1208.4Increase the maximal AIR
    86Beijing University of Posts and Telecommunications16QAM4012.144BER performance,higher bit rate
    87University of Antioquia8/16QAM-10

    Better performance、longer

    transmission distance

    88Georgia Institude of Technology16QAM-OFDM425.9First experimental demonstration
    Table 6. Research of PS technology in ROF transmission system
    VLC transmission system
    Ref.TxRxSignalRateInstitution
    40LEDPDPAM42 Gb/sBeijing University of Posts and Telecommunications
    90LEDPD256QAM204.1 Mb/sHuazhong University of Science and Technology
    91LEDPD64QAM50.75 Mb/sUniversity of Shanghai for Science and Technology
    92LDAPDDMT10.23 Gb/sNational Taiwan University/Fudan University
    93LEDPIN16QAM1.70 Gb/sFudan University
    Table 7. Research of PS technology in VLC transmission system
    Xiang Liu, Jiao Zhang, Min Zhu, Bingchang Hua, Yuancheng Cai, Mingzheng Lei, Yucong Zou, Aijie Li. Research Status and Progress of Probabilistic Shaping Techniques in Optical Communication[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1100004
    Download Citation