• Journal of Semiconductors
  • Vol. 46, Issue 4, 042104 (2025)
Napasuda Wichaiyo1, Yuyao Wei1,*, Chao Ding1,**, Guozheng Shi1..., Witoon Yindeesuk2, Liang Wang1, Huān Bì1, Jiaqi Liu1, Shuzi Hayase1, Yusheng Li1, Yongge Yang1 and Qing Shen1,***|Show fewer author(s)
Author Affiliations
  • 1Graduate School of Engineering Science, the University of Electro-Communications, Tokyo 1828585, Japan
  • 2School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
  • show less
    DOI: 10.1088/1674-4926/25030003 Cite this Article
    Napasuda Wichaiyo, Yuyao Wei, Chao Ding, Guozheng Shi, Witoon Yindeesuk, Liang Wang, Huān Bì, Jiaqi Liu, Shuzi Hayase, Yusheng Li, Yongge Yang, Qing Shen. Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells[J]. Journal of Semiconductors, 2025, 46(4): 042104 Copy Citation Text show less
    References

    [1] M J Choi, F P García de Arquer, A H Proppe et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat Commun, 11, 103(2020).

    [2] O Voznyy, D Zhitomirsky, P Stadler et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 6, 8448(2012).

    [3] L J Meng, Q W Xu, U K Thakur et al. Unusual surface ligand doping-induced p-type quantum dot solids and their application in solar cells. ACS Appl Mater Interfaces, 12, 53942(2020).

    [4] R W Crisp, D M Kroupa, A R Marshall et al. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Sci Rep, 5, 9945(2015).

    [5] A J Nozik. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 457, 3(2008).

    [6] C Giansante, I Infante, E Fabiano et al. "Darker-than-black" PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J Am Chem Soc, 137, 1875(2015).

    [7] I Moreels, K Lambert, D Smeets et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 3, 3023(2009).

    [8] H G Zhao, F Rosei. Colloidal quantum dots for solar technologies. Chem, 3, 229(2017).

    [9] L J Meng, Q W Xu, J W Zhang et al. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun, 60, 1072(2024).

    [10] L H Lin, Z H Dong, J Wang et al. Flexible ultrahigh-resolution quantum-dot light-emitting diodes. Adv Funct Materials, 34, 2408604(2024).

    [11] H Wang, J Pinna, D G Romero et al. PbS quantum dots ink with months-long shelf-lifetime enabling scalable and efficient short-wavelength infrared photodetectors. Adv Mater, 36, 2311526(2024).

    [12] H L Wei, X Y Ji, J G Cao et al. High-performance CsPbI3 quantum dot photodetector with a vertical structure based on the Frenkel-Poole emission effect. ACS Nano, 18, 26643(2024).

    [13] H Song, D Yang, D K Wang et al. Size-dependent thermal activation emissions in infrared PbS colloidal quantum dots. J Phys Chem C, 128, 9676(2024).

    [14] C Wang, Y L Wang, Y W Jia et al. Precursor chemistry enables the surface ligand control of PbS quantum dots for efficient photovoltaics. Adv Sci, 10, e2204655(2023).

    [15] C Ding, D D Wang, D Liu et al. Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: Reducing nonradiative recombination and balancing charge carrier extraction. Adv Energy Mater, 12, 2270148(2022).

    [16] B Sun, A Johnston, C Xu et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule, 4, 1542(2020).

    [17] Y Y Wei, C Ding, G Z Shi et al. Stronger coupling of quantum dots in hole transport layer through intermediate ligand exchange to enhance the efficiency of PbS quantum dot solar cells. Small Methods, 8, e2400015(2024).

    [18] X Z Lan, S Masala, E H Sargent. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat Mater, 13, 233(2014).

    [19] M X Liu, F L Che, B Sun et al. Controlled steric hindrance enables efficient ligand exchange for stable, infrared-bandgap quantum dot inks. ACS Energy Lett, 4, 1225(2019).

    [20] I S Zhidkov, A F Akbulatov, A I Poteryaev et al. The photochemical stability of PbI2 and PbBr2: optical and XPS and DFT studies. Coatings, 13, 784(2023).

    [21] C Wang, Q Wu, Y L Wang et al. P-type PbS quantum dot solar ink via hydrogen-bonding modulated solvation for high-efficiency photovoltaics. Adv Funct Materials, 34, 2315365(2024).

    [22] N V Dambhare, A Sharma, C Mahajan et al. Thiocyanate- and thiol-functionalized p-doped quantum dot colloids for the development of bulk homojunction solar cells. Energy Tech, 10, 2200455(2022).

    [23] Z L Teh, L Hu, Z L Zhang et al. Enhanced power conversion efficiency via hybrid ligand exchange treatment of p-type PbS quantum dots. ACS Appl Mater Interfaces, 12, 22751(2020).

    [24] D Fang, F He, J L Xie et al. Calibration of binding energy positions with C1s for XPS results. J Wuhan Univ Technol Mater Sci Ed, 35, 711(2020).

    [25] W T Xiong, W D Tang, G Zhang et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 633, 344(2024).

    [26] T Hossain, S Joy, K Draffen et al. Oxidation in tin halide perovskites: Influence of acidic and basic additives. ACS Appl Energy Mater, 6, 12334(2023).

    [27] K Yokoyama, T Omata, S Yokoyama et al. Ambient aqueous-phase synthesis of highly stable methylammonium tin iodide perovskites using alkali iodides and ascorbic acid. ACS Appl Energy Mater, 6, 11070(2023).

    [28] A Bhardwaj, D Marongiu, V Demontis et al. Single crystal Sn-based halide perovskites. Nanomater, 14, 1444(2024).

    Napasuda Wichaiyo, Yuyao Wei, Chao Ding, Guozheng Shi, Witoon Yindeesuk, Liang Wang, Huān Bì, Jiaqi Liu, Shuzi Hayase, Yusheng Li, Yongge Yang, Qing Shen. Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells[J]. Journal of Semiconductors, 2025, 46(4): 042104
    Download Citation