• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0327001 (2022)
Fu Yu1, Tian Xiao2, Gaoqian He1, and Qinghong Liao1、*
Author Affiliations
  • 1Department of Electronic Information Engineering, Information Engineering School, Nanchang University, Nanchang , Jiangxi 330031, China
  • 2School of Future Technology, Nanchang University, Nanchang , Jiangxi 330031, China
  • show less
    DOI: 10.3788/LOP202259.0327001 Cite this Article Set citation alerts
    Fu Yu, Tian Xiao, Gaoqian He, Qinghong Liao. Probe Absorption Properties of a Superconducting Qubit Coupled to Microwave Cavity and Mechanical Resonator[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0327001 Copy Citation Text show less
    References

    [1] Vion D, Aassime A, Cottet A et al. Manipulating the quantum state of an electrical circuit[J]. Science, 296, 886-889(2002).

    [2] Chiorescu I, Nakamura Y, Harmans C J P M et al. Coherent quantum dynamics of a superconducting flux qubit[J]. Science, 299, 1869-1871(2003).

    [3] Blais A, Huang R S, Wallraff A et al. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation[J]. Physical Review A, 69, 062320(2004).

    [4] Zhang T C, Wu W, Yang P F et al. High-finesse micro-optical Fabry-Perot cavity and its applications in strongly coupled cavity quantum electrodynamics[J]. Acta Optica Sinica, 41, 0127001(2021).

    [5] Yang Z Y, Shao Y T, Wu Q Y et al. Long-range quantum coherenceand quantum phase transition in atom-microcavity coupled system[J]. Laser & Optoelectronics Progress, 57, 012701(2020).

    [6] Xiang Z L, Ashhab S, You J Q et al. Hybrid quantum circuits: superconducting circuits interacting with other quantum systems[J]. Reviews of Modern Physics, 85, 623(2013).

    [7] Blais A, Girvin S M, Oliver W D. Quantum information processing and quantum optics with circuit quantum electrodynamics[J]. Nature Physics, 16, 247-256(2020).

    [8] Clerk A A, Lehnert K W, Bertet P et al. Hybrid quantum systems with circuit quantum electrodynamics[J]. Nature Physics, 16, 257-267(2020).

    [9] Wallraff A, Schuster D I, Blais A et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 431, 162-167(2004).

    [10] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).

    [11] Wang H, Sun H C, Zhang J et al. Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED[J]. Science China Physics, Mechanics and Astronomy, 55, 2264-2272(2012).

    [12] Pirkkalainen J M, Cho S U, Massel F et al. Cavity optomechanics mediated by a quantum two-level system[J]. Nature Communications, 6, 6981(2015).

    [13] Xiong W, Jin D Y, Jing J et al. Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit[J]. Physical Review, A, 92, 032318(2015).

    [14] Sun C P, Wei L F, Liu Y X et al. Quantum transducers: integrating transmission lines and nanomechanical resonators via charge qubits[J]. Physical Review A, 73, 022318(2006).

    [15] Abdi M, Degenfeld-Schonburg P, Sameti M et al. Dissipative optomechanical preparation of macroscopic quantum superposition states[J]. Physical Review Letters, 116, 233604(2016).

    [16] Wang J. Ground-state cooling of mechanical resonator in three-Laguerre-Gaussian-cavity[J]. Acta Optica Sinica, 40, 1827001(2020).

    [17] Ekinci K L, Yang Y T, Huang X M H et al. Balanced electronic detection of displacement in nanoelectromechanical systems[J]. Applied Physics Letters, 81, 2253-2255(2002).

    [18] Li J J, Zhu K D. A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system[J]. Applied Physics Letters, 94, 063116(2009).

    [19] Chen H J. Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system[J]. Acta Physica Sinica, 69, 134203(2020).

    [20] Pirkkalainen J M, Cho S U, Li J et al. Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator[J]. Nature, 494, 211-215(2013).

    [21] Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box[J]. Nature, 398, 786-788(1999).

    [22] Martinis J M, Nam S, Aumentado J et al. Rabi oscillations in a large Josephson-junction qubit[J]. Physical Review Letters, 89, 117901(2002).

    [23] Zhao H, Li T F, Liu J S et al. Progress of electromagnetically induced transparency based on superconducting qubits[J]. Acta Physica Sinica, 61, 154214(2012).

    [24] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 525, 223-254(2013).

    [25] Yuan Z, Ling W J, Chen C et al. A high-power LD double-end-pumped acousto-optic Q-switched Tm∶YAP laser[J]. Chinese Journal of Lasers, 48, 0501018(2021).

    [26] You J Q, Tsai J S, Nori F. Controllable manipulation and entanglement of macroscopic quantum states in coupled charge qubits[J]. Physical Review B, 68, 024510(2003).

    [27] Cotrufo M, Fiore A, Verhagen E. Coherent atom-phonon interaction through mode field coupling in hybrid optomechanical systems[J]. Physical Review Letters, 118, 133603(2017).

    [28] Hammerer K, Wallquist M, Genes C et al. Strong coupling of a mechanical oscillator and a single atom[J]. Physical Review Letters, 103, 063005(2009).

    [29] Ramírez-Muñoz J E, Cuartas J P R, Vinck-Posada H. Quantum correlations between two cavity QED systems coupled by a mechanical resonator[J]. The European Physical Journal B, 91, 268(2018).

    [30] Chen H J. Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity[J]. Photonics Research, 6, 1171-1176(2018).

    [31] Walls D F, Milburn G J[M]. Quantum optics(1994).

    [32] Boyd R W[M]. Nonlinear optics(2008).

    [33] Li J J, Zhu K D. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity[J]. Nanotechnology, 22, 055202(2011).

    [34] Li J J, Zhu K D. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot[J]. Nanotechnology, 21, 205501(2010).

    Fu Yu, Tian Xiao, Gaoqian He, Qinghong Liao. Probe Absorption Properties of a Superconducting Qubit Coupled to Microwave Cavity and Mechanical Resonator[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0327001
    Download Citation