• Journal of Semiconductors
  • Vol. 42, Issue 12, 122701 (2021)
Xinyi Li, Ge Li, Hongbo Lu, and Wei Zhang
Author Affiliations
  • Shanghai Institute of Space Power-sources, Shanghai 200245, China
  • show less
    DOI: 10.1088/1674-4926/42/12/122701 Cite this Article
    Xinyi Li, Ge Li, Hongbo Lu, Wei Zhang. >35% 5-junction space solar cells based on the direct bonding technique[J]. Journal of Semiconductors, 2021, 42(12): 122701 Copy Citation Text show less
    References

    [1] P T Chiu, D C Law, S B Singer et al. High performance 5J and 6J direct bonded (SBT) space solar cells. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1(2015).

    [2] P T Chiu, D C Law, R L Woo et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 0011(2014).

    [3] P T Chiu, D C Law, R L Woo et al. Direct semiconductor bonded 5J cell for space and terrestrial applications. IEEE J Photovolt, 4, 493(2014).

    [4] J F Geisz, R M France, K L Schulte et al. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat Energy, 5, 326(2020).

    [5] J F Geisz, M A Steiner, N Jain et al. Building a six-junction inverted metamorphic concentrator solar cell. IEEE J Photovolt, 8, 626(2018).

    [6] R R King, D Bhusari, A Boca et al. Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog Photovolt: Res Appl, 19, 797(2011).

    [7] T Tayagaki, S K Reichmuth, H Helmers et al. Transient analysis of luminescent coupling effects in multi-junction solar cells. J Appl Phys, 124, 183103(2018).

    [8] T Tayagaki, R Oshima, Y Shoji et al. Luminescence effects on subcell current-voltage analysis in InGaP/GaAs tandem solar cells. J Photonics Energy, 10, 025504(2020).

    [9] S H Lim, J J Li, E H Steenbergen et al. Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement. Prog Photovolt: Res Appl, 21, 344(2013).

    [10] H Hamada, M Shono, S Honda et al. AlGaInP visible laser diodes grown on misoriented substrates. IEEE J Quantum Electron, 27, 1483(1991).

    [11] M C Wu, J F Lin, M J Jou et al. High reliability of AlGaInP LED's with efficient transparent contacts for spatially uniform light emission. IEEE Electron Device Lett, 16, 482(1995).

    [12] M Zaknoune, O Schuler, F Mollot et al. 0.1 μm (Al0.5Ga0.5)0.5In0.5P/In0.2Ga0.8As/GaAs PHEMT grown by gas source molecular beam epitaxy. Electron Lett, 35, 1776(1999).

    [13] S Heckelmann, D Lackner, C Karcher et al. Investigations on AlxGa1–xAs solar cells grown by MOVPE. IEEE J Photovoltaics, 5, 446(2015).

    [14] M A Steiner, R M France, E E Perl et al. Reverse heterojunction (Al)GaInP solar cells for improved efficiency at concentration. IEEE J Photovolt, 10, 487(2020).

    [15] H B Lu, X Y Li, W Zhang et al. MOVPE grown 1.0 eV InGaAsP solar cells with bandgap-voltage offset near to ideal radiative recombination limit. Sol Energy Mater Sol Cells, 196, 65(2019).

    [16] H B Lu, G Li, X Y Li et al. Small lattice-mismatched InGaAsP: Material characterization and application in solar cells. Chin J Lumin, 41, 351(2020).

    [17] K Onabe. Calculation of miscibility gap in quaternary InGaPAs with strictly regular solution approximation. Jpn J Appl Phys, 21, 797(1982).

    [18] K Ono, M Takemi. Anomalous behavior of phase separation of InGaAsP on GaAs substrates grown by MOVPE. J Cryst Growth, 298, 41(2007).

    [19] R R LaPierre, T Okada, B J Robinson et al. Spinodal-like decomposition of InGaAsP(100) InP grown by gas source molecular beam epitaxy. J Cryst Growth, 155, 1(1995).

    [20] R J Ram, J J Dudley, J E Bowers et al. GaAs to InP wafer fusion. J Appl Phys, 78, 4227(1995).

    Xinyi Li, Ge Li, Hongbo Lu, Wei Zhang. >35% 5-junction space solar cells based on the direct bonding technique[J]. Journal of Semiconductors, 2021, 42(12): 122701
    Download Citation