• Journal of Semiconductors
  • Vol. 42, Issue 3, 031101 (2021)
Ying Zhu, Yongli He, Shanshan Jiang, Li Zhu..., Chunsheng Chen and Qing Wan|Show fewer author(s)
DOI: 10.1088/1674-4926/42/3/031101 Cite this Article
Ying Zhu, Yongli He, Shanshan Jiang, Li Zhu, Chunsheng Chen, Qing Wan. Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications[J]. Journal of Semiconductors, 2021, 42(3): 031101 Copy Citation Text show less
References

[1] N Kimizuka, T Mohri. Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000 °C. J Solid State Chem, 60, 382(1985).

[2] K Nomura. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300, 1269(2003).

[3] K Nomura, H Ohta, A Takagi et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488(2004).

[4] T Arai. Oxide-TFT technologies for next-generation AMOLED displays. J Soc Inf Disp, 20, 156(2012).

[5] C L Lin, P C Lai, P C Lai et al. Pixel circuit with parallel driving scheme for compensating luminance variation based on a-IGZO TFT for AMOLED displays. J Display Technol, 12, 1681(2016).

[6] T Kamiya, K Nomura, H Hosono. Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: Percolation conduction examined by analytical model. J Disp Technol, 5, 462(2009).

[7] P Wellenius, A Suresh, H Luo et al. An amorphous indium-gallium-zinc-oxide active matrix electroluminescent pixel. J Disp Technol, 5, 438(2009).

[8] M Ito, M Kon, M Ishizaki et al. A flexible active-matrix TFT array with amorphous oxide semiconductors for electronic paper. IDW/AD’05, 845(2005).

[9] H N Lee, J Kyung, S K Kang et al. 3.5 inch QCIF+ AM-OLED panel based on oxide TFT backplane. SID Symp Dig Tech Pap, 38, 1826(2007).

[10] M Ito, M Kon, C Miyazaki et al. Amorphous oxide TFT and their applications in electrophoretic displays. Phys Status Solidi A, 205, 1885(2008).

[11] J K Jeong, J H Jeong, J H Choi et al. 12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array. SID Symp Dig Tech Pap, 39, 1(2008).

[12] J H Lee, D H Kim, D J Yang et al. World's largest (15-inch) XGA AMLCD panel using IGZO oxide TFT. SID Symp Dig Tech Pap, 39, 625(2008).

[13] J S Park, T W Kim, D Stryakhilev et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 95, 013503(2009).

[14] J J Huang, C Y Su, X P Qiao et al. Fabrication of 5.5-inch AMOLED panel using IGZO TFTs. SID Symp Dig Tech Pap, 50, 157(2019).

[15] S Choi, S Kim, J Jang et al. Oxygen content and bias influence on amorphous InGaZnO TFT-based temperature sensor performance. IEEE Electron Device Lett, 40, 1666(2019).

[16] H Jeong, C S Kong, S W Chang et al. Temperature sensor made of amorphous indium–gallium–zinc oxide TFTs. IEEE Electron Device Lett, 34, 1569(2013).

[17] N Kumar, J Kumar, S Panda. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO) as a pH sensitive layer for applications in field effect based sensors. AIP Adv, 5, 067123(2015).

[18] N Kumar, J Kumar, S Panda. Back-channel electrolyte-gated a-IGZO dual-gate thin-film transistor for enhancement of pH sensitivity over Nernst limit. IEEE Electron Device Lett, 37, 500(2016).

[19] J T Smith, S S Shah, M Goryll et al. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens J, 14, 937(2014).

[20] D Geng, Y F Chen, M Mativenga et al. Touch sensor array with integrated drivers and comparator using a-IGZO TFTs. IEEE Electron Device Lett, 38, 391(2017).

[21] Y H Tai, H L Chiu, L S Chou. Active matrix touch sensor detecting time-constant change implemented by dual-gate IGZO TFTs. Solid-State Electron, 72, 67(2012).

[22] X Chen, L L Chen, T K Li et al. Corrections to “highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs”. IEEE Electron Device Lett, 39, 1262(2018).

[23] J T Smith, A J Couture, J R Stowell et al. Optically seamless flexible electronic tiles for ultra large-area digital X-ray imaging. IEEE Trans Compon, Packag Manufact Technol, 4, 1109(2014).

[24] P Xiao, J H Huang, T Dong et al. X-ray photoelectron spectroscopy analysis of the effect of photoresist passivation on InGaZnO thin-film transistors. Appl Surf Sci, 471, 403(2019).

[25] C Zhao, J Kanicki. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med Phys, 41, 091902(2014).

[26] H Lee, J Kim, J Kim et al. Investigation of infrared photo-detection through subgap density-of-states in a-InGaZnO thin-film transistors. IEEE Electron Device Lett, 38, 584(2017).

[27] J Yu, K Javaid, L Liang et al. High-performance visible-blind ultraviolet photodetector based on IGZO TFT coupled with p-n heterojunction. ACS Appl Mater Interfaces, 10, 8102(2018).

[28] H Y Tang, Y T Li, R Sokolovskij et al. Ultra-high sensitive NO2 gas sensor based on tunable polarity transport in CVD-WS2/IGZO p-n heterojunction. ACS Appl Mater Interfaces, 11, 40850(2019).

[29] D J Yang, G C Whitfield, N G Cho et al. Amorphous InGaZnO4 films: Gas sensor response and stability. Sens Actuators B, 171/172, 1166(2012).

[30] H W Zan, C H Li, C C Yeh et al. Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 98, 253503(2011).

[31] M Nag, A Bhoolokam, S Smout et al. Circuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil. J Soc Inf Disp, 22, 509(2014).

[32] G Q Han, S G Cao, Q Yang et al. High-performance all-solution-processed flexible photodetector arrays based on ultrashort channel amorphous oxide semiconductor transistors. ACS Appl Mater Interfaces, 10, 40631(2018).

[33] W Honda, S Harada, S Ishida et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 27, 4674(2015).

[34] K Miura, T Ueda, S Nakano et al. Low-temperature-processed IGZO TFTs for flexible AMOLED with integrated gate driver circuits. SID Symp Dig Tech Pap, 42, 21(2011).

[35] C J Wan, Y H Liu, L Q Zhu et al. Short-term synaptic plasticity regulation in solution-gated indium-gallium-zinc-oxide electric-double-layer transistors. ACS Appl Mater Interfaces, 8, 9762(2016).

[36] Y L He, S Nie, R Liu et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv Mater, 31, 1900903(2019).

[37] Y H Liu, L Q Zhu, P Feng et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 27, 5599(2015).

[38] D M Caughey, R E Thomas. Carrier mobilities in silicon empirically related to doping and field. Proc IEEE, 55, 2192(1967).

[39] A R Moore. Electron and hole drift mobility in amorphous silicon. Appl Phys Lett, 31, 762(1977).

[40] J M Lee, I T Cho, J H Lee et al. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Appl Phys Lett, 93, 093504(2008).

[41] C W Liao. Mobility impact on compensation performance of AMOLED pixel circuit using IGZO TFTs. J Semicond, 40, 022403(2019).

[42] Y L He, R Liu, S S Jiang et al. IGZO-based floating-gate synaptic transistors for neuromorphic computing. J Phys D, 53, 215106(2020).

[43] Y L He, S Nie, R Liu et al. Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors. IEEE Electron Device Lett, 40, 818(2019).

[44] J Jiang, Q Wan, J Sun et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl Phys Lett, 95, 152114(2009).

[45] X Wan, Y Yang, P Feng et al. Short-term plasticity and synaptic filtering emulated in electrolyte-gated IGZO transistors. IEEE Electron Device Lett, 37, 299(2016).

[46] A Pierre, S E Doris, R Lujan et al. Monolithic integration of ion-selective organic electrochemical transistors with thin film transistors on flexible substrates. Adv Mater Technol, 4, 1800577(2019).

[47] T Meister, K Ishida, S Knobelspies et al. 5–31-Hz 188-μW light-sensing oscillator with two active inductors fully integrated on plastic. IEEE J Solid-State Circuits, 54, 2195(2019).

[48] Q G Ma, H H Wang, L F Zhou et al. Robust gate driver on array based on amorphous IGZO thin-film transistor for large size high-resolution liquid crystal displays. IEEE J Electron Devices Soc, 7, 717(2019).

[49] J Wu, J F Shi, C Y Dong et al. Effect of active layer deposition temperature on the performance of sputtered amorphous In–Ga–Zn–O thin film transistors. J Semicond, 35, 014003(2014).

[50] Y M Kim, H B Kang, G H Kim et al. Improvement in device performance of vertical thin-film transistors using atomic layer deposited IGZO channel and polyimide spacer. IEEE Electron Device Lett, 38, 1387(2017).

[51] J Z Sheng, J H Lee, W H Choi et al. Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development. J Vac Sci Technol A, 36, 060801(2018).

[52] I Katsouras, C Frijters, P Poodt et al. Large-area spatial atomic layer deposition of amorphous oxide semiconductors at atmospheric pressure. J Soc Inf Disp, 27, 304(2019).

[53] C H Wu, K M Chang, Y M Chen et al. Investigation of electrical characteristics on AP-PECVD fabricated amorphous IGZO TFTs with hydrogen plasma treatment. J Nanosci Nanotechnol, 19, 2306(2019).

[54] K Takenaka, M Endo, H Hirayama et al. Low-temperature formation of high-mobility a-InGaZnOx films using plasma-enhanced reactive processes. Jpn J Appl Phys, 58, 090605(2019).

[55] C H Wu, K M Chang, Y M Chen et al. Study of in situ hydrogen plasma treatment on InGaZnO with atmospheric pressure-plasma enhanced chemical vapor deposition. J Nanosci Nanotechnol, 19, 2310(2019).

[56] D J Kim, D L Kim, Y S Rim et al. Improved electrical performance of an oxide thin-film transistor having multistacked active layers using a solution process. ACS Appl Mater Interfaces, 4, 4001(2012).

[57]

[58] P Weimer. The TFT a new thin-film transistor. Proc IRE, 50, 1462(1962).

[59] P F Carcia, R S McLean, M H Reilly et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett, 82, 1117(2003).

[60] R L Hoffman, B J Norris, J F Wager. ZnO-based transparent thin-film transistors. Appl Phys Lett, 82, 733(2003).

[61] S Masuda, K Kitamura, Y Okumura et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys, 93, 1624(2003).

[62] T Nagata, S Hirasa, Y Dozen et al. A 2.78-in 1058-ppi ultra-high-resolution flexible OLED display using CAAC-IGZO FETs. SID Symp Dig Tech Pap, 47, 1052(2016).

[63] J Troughton, D Atkinson. Amorphous InGaZnO and metal oxide semiconductor devices: An overview and current status. J Mater Chem C, 7, 12388(2019).

[64] M Mativenga, J K Um, D H Kang et al. Edge effects in bottom-gate inverted staggered thin-film transistors. IEEE Trans Electron Devices, 59, 2501(2012).

[65] K J Chang, W T Chen, W C Chang et al. A-IGZO TFTs reliability improvement by dual gate structure. SID Symp Dig Tech Pap, 46, 1203(2015).

[66] X L Li, D Geng, M Mativenga et al. High-speed dual-gate a-IGZO TFT-based circuits with top-gate offset structure. IEEE Electron Device Lett, 35, 461(2014).

[67] H Lim, H X Yin, J S Park et al. Double gate GaInZnO thin film transistors. Appl Phys Lett, 93, 063505(2008).

[68] N Munzenrieder, P Voser, L Petti et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 35, 69(2014).

[69] H R Kim, J H Yang, G H Kim et al. Flexible vertical-channel thin-film transistors using In-Ga-Zn-O active channel and polyimide spacer on poly(ethylene naphthalate) substrate. J Vac Sci Technol B, 37, 010602(2019).

[70] Y Liu, H L Zhou, R Cheng et al. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett, 14, 1413(2014).

[71] H I Yeom, G Moon, Y Nam et al. Oxide vertical TFTs for the application to the ultra high resolution display. SID Symp Dig Tech Pap, 47, 820(2016).

[72] P F Du, P Feng, X Wan et al. Amorphous InGaZnO4 neuron transistors with temporal and spatial summation function. Chin Phys Lett, 34, 058502(2017).

[73] H E Kim, M Furuta, S M Yoon. A facile doping process of the organic inter-layer dielectric for self-aligned coplanar In-Ga-Zn-O thin-film transistors. IEEE Electron Device Lett, 41, 393(2020).

[74] Y Q Zhang, H Yang, H Peng et al. Self-aligned top-gate amorphous InGaZnO TFTs with plasma enhanced chemical vapor deposited sub-10 nm SiO2 gate dielectric for low-voltage applications. IEEE Electron Device Lett, 40, 1459(2019).

[75] A Sato, K Abe, R Hayashi et al. Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor. Appl Phys Lett, 94, 133502(2009).

[76] L Y Su, H K Lin, C C Hung et al. Role ofHfO2/SiO2 gate dielectric on the reduction of low-frequent noise and the enhancement of a-IGZO TFT electrical performance. J Disp Technol, 8, 695(2012).

[77] T Yamamoto, T Takei, Y Nakajima et al. Simple transfer technology for fabrication of TFT backplane for flexible displays. IEEE Trans Ind Appl, 48, 1662(2012).

[78] G W Hyung, J Park, J X Wang et al. Amorphous indium gallium zinc oxide thin-film transistors with a low-temperature polymeric gate dielectric on a flexible substrate. Jpn J Appl Phys, 52, 071102(2013).

[79] L Q Zhu, C J Wan, L Q Guo et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun, 5, 3158(2014).

[80] Y Yang, Y L He, S Nie et al. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett, 39, 897(2018).

[81] K Beom, P Yang, D Park et al. Single- and double-gate synaptic transistor with TaOx gate insulator and IGZO channel layer. Nanotechnology, 30, 025203(2019).

[82] T C Chen, Y Kuo, T C Chang et al. Stability of double gate amorphous In–Ga–Zn–O thin-film transistors with various top gate designs. Jpn J Appl Phys, 56, 120303(2017).

[83] W J Cho, M J Ahn. Bias stress instability of double-gate a-IGZO TFTs on polyimide substrate. J Korean Phys Soc, 71, 325(2017).

[84] X He, L Y Wang, X Xiao et al. Implementation of fully self-aligned homojunction double-gate a-IGZO TFTs. IEEE Electron Device Lett, 35, 927(2014).

[85] A Nathan, S Lee, S Jeon et al. Amorphous oxide semiconductor TFTs for displaysand imaging. J Disp Technol, 10, 917(2014).

[86] D Kuzum, S M Yu, H S Philip Wong. Synaptic electronics: Materials, devices and applications. Nanotechnology, 24, 382001(2013).

[87] M Mativenga, M H Choi, J W Choi et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 32, 170(2011).

[88] G Cantarella, K Ishida, L Petti et al. Flexible In–Ga–Zn–O-based circuits with two and three metal layers: Simulation and fabrication study. IEEE Electron Device Lett, 37, 1582(2016).

[89] S Lee, S Jeon, R Chaji et al. Transparent semiconducting oxide technology for touch free interactive flexible displays. Proc IEEE, 103, 644(2015).

[90] H H Hsieh, H H Lu, H C Ting et al. Development of IGZO TFTs and their applications to next-generation flat-panel displays. J Inf Disp, 11, 160(2010).

[91] G Baek, J Kanicki. Modeling of current: Voltage characteristics for double-gate a-IGZO TFTs and its application to AMLCDs. J Soc Inf Display, 20, 237(2012).

[92] N Gong, C Park, J Lee et al. Implementation of 240Hz 55-inch ultra definition LCD driven by a-IGZO semiconductor TFT with copper signal lines. SID Symp Dig Tech Pap, 43, 784(2012).

[93] C L Lin, W Y Chang, C C Hung. Compensating pixel circuit driving AMOLED display with a-IGZO TFTs. IEEE Electron Device Lett, 34, 1166(2013).

[94] D Kim, Y Kim, S Lee et al. High resolution a-IGZO TFT pixel circuit for compensating threshold voltage shifts and OLED degradations. IEEE J Electron Devices Soc, 5, 372(2017).

[95] P C Lai, C L Lin, J Kanicki. Novel top-anode OLED/a-IGZO TFTs pixel circuit for 8K4K AM-OLEDs. IEEE Trans Electron Devices, 66, 436(2019).

[96] C Liao, W Deng, D Song et al. Mirrored OLED pixel circuit for threshold voltage and mobility compensation with IGZO TFTs. Microelectron J, 46, 923(2015).

[97] C L Lin, F H Chen, C C Hung et al. New a-IGZO pixel circuit composed of three transistors and one capacitor for use in high-speed-scan AMOLED displays. J Disp Technol, 11, 1031(2015).

[98] M Mativenga, S H Ha, D Geng et al. Infinite output resistance of corbino thin-film transistors with an amorphous-InGaZnO active layer for large-area AMOLED displays. IEEE Trans Electron Devices, 61, 3199(2014).

[99] K Shimazoe, A Koyama, H Takahashi et al. Prototype of IGZO-TFT preamplifier and analog counter for pixel detector. J Instrum, 12, C02045(2017).

[100] W S Shin, H A Ahn, J S Na et al. A driving method of pixel circuit using a-IGZO TFT for suppression of threshold voltage shift in AMLED displays. IEEE Electron Device Lett, 38, 760(2017).

[101] C C Wang, Z J Hu, X He et al. One gate diode-connected dual-gate a-IGZO TFT driven pixel circuit for active matrix organic light-emitting diode displays. IEEE Trans Electron Devices, 63, 3800(2016).

[102] J Y Yang, S H Jung, C S Woo et al. A short-channel TFT of amorphous In–Ga–Zn–O semiconductor pixel structure with advanced five-mask process. IEEE Electron Device Lett, 35, 1043(2014).

[103] L Zhou, M Xu, X H Xia et al. Power consumption model for AMOLED display panel based on 2T-1C pixel circuit. J Display Technol, 12, 1064(2016).

[104] Y Hara, T Kikuchi, H Kitagawa et al. IGZO-TFT technology for large-screen 8K display. J Soc Inf Disp, 26, 169(2018).

[105] C L Lin, P S Chen, P C Lai et al. Novel pixel circuit with compensation for normally-off/on a-IGZO TFTs and OLED luminance degradation. J Disp Technol, 12, 1664(2016).

[106] Y H Tai, L S Chou, H L Chiu et al. Three-transistor AMOLED pixel circuit with threshold voltage compensation function using dual-gate IGZO TFT. IEEE Electron Device Lett, 33, 393(2012).

[107] C H Jeon, J G Um, M Mativenga et al. Fast threshold voltage compensation AMOLED pixel circuit using secondary gate effect of dual gate a-IGZO TFTs. IEEE Electron Device Lett, 37, 1450(2016).

[108] M Bagheri, X Cheng, J H Zhang et al. Threshold voltage compensation error in voltage programmed AMOLED displays. J Disp Technol, 12, 658(2016).

[109] W Lim, J H Jang, S H Kim et al. High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett, 93, 082102(2008).

[110] E Fortunato, N Correia, P Barquinha et al. High-performance flexible hybrid field-effect transistors based on cellulose fiber paper. IEEE Electron Device Lett, 29, 988(2008).

[111] G J Lee, J Kim, J H Kim et al. High performance, transparent a-IGZO TFTs on a flexible thin glass substrate. Semicond Sci Technol, 29, 035003(2014).

[112] N Münzenrieder, C Zysset, L Petti et al. Flexible double gate a-IGZO TFT fabricated on free standing polyimide foil. Solid-State Electron, 84, 198(2013).

[113] W Lim, E A Douglas, D P Norton et al. Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl Phys Lett, 96, 053510(2010).

[114] Y C Kim, S J Lee, I K Oh et al. Bending stability of flexible amorphous IGZO thin film transistors with transparent IZO/Ag/IZO oxide-metal-oxide electrodes. J Alloy Compd, 688, 1108(2016).

[115] N Munzenrieder, K H Cherenack, G Troster. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 58, 2041(2011).

[116] S Nakano, N Saito, K Miura et al. Highly reliable a-IGZO TFTs on a plastic substrate for flexible AMOLED displays. J Soc Inf Disp, 20, 493(2012).

[117] J S Kim, J W Byun, J H Jang et al. A high-reliability carry-free gate driver for flexible displays using a-IGZO TFTs. IEEE Trans Electron Devices, 65, 3269(2018).

[118] D S Kim, O K Kwon. A small-area and low-power scan driver using a coplanar a-IGZO thin-film transistor with a dual-gate for liquid crystal displays. IEEE Electron Device Lett, 38, 195(2017).

[119] H Yamaguchi, T Ueda, K Miura et al. 11.7-inch flexible AMOLED display driven by a-IGZO TFTs on plastic substrate. SID Symp Dig Tech Pap, 43, 1002(2012).

[120] W B Yoo, C Ha, J Kwon et al. Flexible a-IGZO TFT for large sized OLED TV. SID Symp Dig Tech Pap, 49, 714(2018).

[121] Y C Zhao, F Zhao, C Chang et al. The world's first prototype of 85-inch 8K4K 120Hz LCD with BCE-IGZO structure and GOA design. SID Symp Dig Tech Pap, 49, 330(2018).

[122] K M Kim, I Han, S Noh et al. Bezel free design of organic light emitting diode display via a-InGaZnO gate driver circuit integration within active array. J Soc Inf Disp, 27, 514(2019).

[123] N Liu, L Q Zhu, P Feng et al. Flexible sensory platform based on oxide-based neuromorphic transistors. Sci Rep, 5, 18082(2015).

[124] S Shah, J Smith, J Stowell et al. Biosensing platform on a flexible substrate. Sens Actuators B, 210, 197(2015).

[125] G S Cai, P Yang, X Z Wang et al. Investigation of pH sensor based on liquid-solid dual-gated IGZO thin-film transistor. Mater Res Express, 6, 096305(2019).

[126]

[127] M Kimura, T Hasegawa, K Ide et al. Light irradiation history sensor using amorphous In-Ga-Zn-O thin-film transistor exposed to ozone annealing. IEEE Electron Device Lett, 33, 384(2012).

[128] P T Liu, D B Ruan, X Y Yeh et al. Highly responsive blue light sensor with amorphous indium-zinc-oxide thin-film transistor based architecture. Sci Rep, 8, 8153(2018).

[129] Z Pei, H C Lai, J Y Wang et al. High-responsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor. IEEE Electron Device Lett, 36, 44(2015).

[130] J Yu, S W Shin, K H Lee et al. Visible-light phototransistors based on InGaZnO and silver nanoparticles. J Vac Sci Technol B, 33, 061211(2015).

[131] H W Zan, W T Chen, H W Hsueh et al. Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer. Appl Phys Lett, 97, 203506(2010).

[132] J F Tressler, S Alkoy, R E Newnham. Piezoelectric sensors and sensor materials. J Electrocera, 2, 257(1998).

[133] D Geng, S Y Han, H Seo et al. Piezoelectric pressure sensing device using top-gate effect of dual-gate a-IGZO TFT. IEEE Sensor J, 17, 585(2017).

[134] D Maity, S Halder, P Roy. High pH sensing properties of a new schiff-base compound. ChemistrySelect, 3, 440(2018).

[135] M J Ahn, C M Lim, W J Cho. Highly sensitive ion-sensitive field-effect transistor sensor using fully transparent amorphous In–Ga–Zn–O thin-film transistors. Semicond Sci Technol, 32, 035003(2017).

[136] J Y Pyo, W J Cho. High-performance SEGISFET pH Sensor using the structure of double-gate a-IGZO TFTs with engineered gate oxides. Semicond Sci Technol, 32, 035015(2017).

[137] K S Kim, C H Ahn, S H Jung et al. Toward adequate operation of amorphous oxide thin-film transistors for low-concentration gas detection. ACS Appl Mater Interfaces, 10, 10185(2018).

[138] Y T Lee, J Lee, H Hwang et al. Novel hydrogen gas sensing by palladium electrode on dielectric capacitor coupled with an amorphous InGaZnO thin-film transistor. Sens Actuators B, 209, 490(2015).

[139] B C Li, P T Lai, W M Tang. Hydrogen sensors based on TFT's with catalytic source/drain electrodes: IGZO vs. pentacene. IEEE Electron Device Lett, 1(2018).

[140] S Knobelspies, B Bierer, A Daus et al. Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil. Sensors, 18, E358(2018).

[141] A K Tripathi, K Myny, B Hou et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 62, 4063(2015).

[142] Y F Chen, D Geng, T D Lin et al. Full-swing clock generating circuits on plastic using a-IGZO dual-gate TFTs with pseudo-CMOS and bootstrapping. IEEE Electron Device Lett, 37, 882(2016).

[143] J W Zheng, S J Han, M M Li et al. A full-swing inverter based on IGZO TFTs for flexible circuits. SID Symp Dig Tech Pap, 49, 709(2018).

[144] P G Bahubalindruni, B Tiwari, M Pereira et al. Rail-to-rail timing signals generation using InGaZnO TFTs for flexible X-ray detector. IEEE J Electron Devices Soc, 8, 157(2020).

[145] S Jeon, S Park, I Song et al. 180nm gate length amorphous InGaZnO thin film transistor for high density image sensor applications. IEEE International Electron Devices Meeting(2010).

[146] T H Chang, C J Chiu, S J Chang et al. Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric. Appl Phys Lett, 102, 221104(2013).

[147] M T Vijjapu, S G Surya, S Yuvaraja et al. Fully integrated indium gallium zinc oxide NO2 gas detector. ACS Sens, 5, 984(2020).

[148] I J Park, C Y Jeong, I T Cho et al. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond Sci Technol, 27, 105019(2012).

[149] Z H Zhang, L L Chen, X Yang et al. Enhanced flexible piezoelectric sensor by the integration of P(VDF-TrFE)/AgNWs film with a-IGZO TFT. IEEE Electron Device Lett, 40, 111(2018).

[150] R A Lujan, R A Street. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett, 33, 688(2012).

[151] C K Machens. Building the human brain. Science, 338, 1156(2012).

[152] P A Merolla, J V Arthur, R Alvarez-Icaza et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345, 668(2014).

[153] M A Zidan, J P Strachan, W D Lu. The future of electronics based on memristive systems. Nat Electron, 1, 22(2018).

[154] Q Xia, J J Yang. Memristive crossbar arrays for brain-inspired computing. Nat Mater, 18, 309(2019).

[155] Z R Wang, C Li, W H Song et al. Reinforcement learning with analogue memristor arrays. Nat Electron, 2, 115(2019).

[156] Z H Tan, R Yang, K Terabe et al. Synaptic metaplasticity realized in oxide memristive devices. Adv Mater, 28, 377(2016).

[157] J B Wang, Y X Li, C Q Yin et al. Long-term depression mimicked in an IGZO-based synaptic transistor. IEEE Electron Device Lett, 38, 191(2017).

[158] Y L He, S Nie, R Liu et al. Indium–gallium–zinc–oxide Schottky synaptic transistors for silent synapse conversion emulation. IEEE Electron Device Lett, 40, 139(2019).

[159] C J Wan, L Q Zhu, Y H Liu et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv Mater, 28, 3557(2016).

[160] X Wan, P Feng, G D Wu et al. Simulation of laterally coupled InGaZnO4-based electric-double-layer transistors for synaptic electronics. IEEE Electron Device Lett, 36, 204(2015).

[161] J M Zhou, N Liu, L Q Zhu et al. Energy-efficient artificial synapses based on flexible IGZO electric-double-layer transistors. IEEE Electron Device Lett, 36, 198(2015).

[162] H W Du, X Lin, Z M Xu et al. Electric double-layer transistors: A review of recent progress. J Mater Sci, 50, 5641(2015).

[163] Y L He, Q Wan. Multi-terminal oxide-based electric-double-layer thin-film transistors for neuromorphic systems. ECS Trans, 86, 177(2018).

Ying Zhu, Yongli He, Shanshan Jiang, Li Zhu, Chunsheng Chen, Qing Wan. Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications[J]. Journal of Semiconductors, 2021, 42(3): 031101
Download Citation