• Journal of Semiconductors
  • Vol. 42, Issue 10, 101606 (2021)
Guanqi Tang and Feng Yan
Author Affiliations
  • Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • show less
    DOI: 10.1088/1674-4926/42/10/101606 Cite this Article
    Guanqi Tang, Feng Yan. Flexible perovskite solar cells: Materials and devices[J]. Journal of Semiconductors, 2021, 42(10): 101606 Copy Citation Text show less
    References

    [1] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [2] H S Kim, C R Lee, J H Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2, 591(2012).

    [3] M A Green, A H Baillie, H S Snaith. The emergence of perovskite solar cells. Nat Photon, 8, 506(2014).

    [4] H Tan, A Jain, O Voznyy et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722(2017).

    [5] W Hui, L Chao, H Lu et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science, 371, 1359(2021).

    [6] T Bu, J Li, H Li et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 372, 1327(2021).

    [7] J Xue, R Wang, X Chen et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 371, 636(2021).

    [8] H Lu, Y Liu, P Ahlawat et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science, 370, eabb8985(2020).

    [9] Q D Tai, P You, H Sang et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun, 7, 11105(2016).

    [10] G Q Tang, P You, Q D Tai et al. Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv Mater, 31, 1807689(2019).

    [11] P You, G Q Tang, J P Cao et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light Sci Appl, 10, 68(2021).

    [12] J Feng. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater, 2, 081801(2014).

    [13] Y G Rong, Y Hu, A Y Mei et al. Challenges for commercializing perovskite solar cells. Science, 361, eaat8235(2018).

    [14] N G Park, M Grätzel, T Miyasaka et al. Towards stable and commercially available perovskite solar cells. Nat Energy, 1, 16152(2016).

    [15] S Park, S W Heo, W Lee et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 561, 516(2018).

    [16] M Kaltenbrunner, G Adam, E D Głowacki et al. Flexible high power-per-weight perovskite solar cells with chromium oxide –metal contacts for improved stability in air. Nat Mater, 14, 1032(2015).

    [17] J Q Zhao, Z J Xu, Z Zhou et al. A safe flexible self-powered wristband system by integrating defective MnO2–x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS Nano, 15, 10597(2021).

    [18] M H Kumar, N Yantara, S Dharani et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun, 49, 11089(2013).

    [19] L K Yang, Q Xiong, Y B Li et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J Mater Chem A, 9, 1574(2021).

    [20] C Y Long, K Q Huang, J H Chang et al. Creating a dual-functional 2D perovskite layer at the interface to enhance the performance of flexible perovskite solar cells. Small, 2102368(2021).

    [21] G Lee, M C Kim, Y W Choi et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ Sci, 12, 3182(2019).

    [22] N G Park, K Zhu. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat Rev Mater, 5, 333(2020).

    [23] H Wang, Z Huang, S Xiao et al. An in situ bifacial passivation strategy for flexible perovskite solar module with mechanical robustness by roll-to-roll fabrication. J Mater Chem A, 9, 5759(2021).

    [24] Y Y Kim, T Y Yang, R Suhonen et al. Roll-to-roll gravure-printed flexible perovskite solar cells using eco-friendly antisolvent bathing with wide processing window. Nat Commun, 11, 5146(2020).

    [25] C Li, S Cong, Z Tian et al. Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 60, 247(2019).

    [26] L Qiu, J Deng, X Lu et al. Integrating perovskite solar cells into a flexible fiber. Angew Chem Int Ed, 53, 10425(2014).

    [27] V Zardetto, T M Brown, A Reale et al. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci Polym Phys, 49, 638(2011).

    [28] H C Weerasinghe, Y Dkhissi, A D Scully et al. Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy, 18, 118(2015).

    [29] E Cho, Y Y Kim, D S Ham et al. Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy, 82, 105737(2021).

    [30] J Yoon, U Kim, J S Choi et al. Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. Mater Today Energy, 20, 100622(2021).

    [31] B Abdollahi Nejand, P Nazari, S Gharibzadeh et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem Commun, 53, 747(2017).

    [32] G S Han, S Lee, M L Duff et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 10, 4697(2018).

    [33] M Lee, Y Jo, D S Kim et al. Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J Mater Chem A, 3, 14592(2015).

    [34] J Troughton, D Bryant, K Wojciechowski et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J Mater Chem A, 3, 9141(2015).

    [35] M Lee, Y Jo, D S Kim et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J Mater Chem A, 3, 4129(2015).

    [36] J H Heo, D H Shin, L M Lee et al. Efficient organic–inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl Mater Interfaces, 10, 31413(2018).

    [37] B Dou, E M Miller, J A Christians et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J Phys Chem Lett, 8, 4960(2017).

    [38] M M Tavakoli, K H Tsui, Q Zhang et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 9, 10287(2015).

    [39] X Dai, Y Deng, C H Van Brackle et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv Energy Mater, 10, 1903108(2020).

    [40] J Ahn, H Hwang, S Jeong et al. Metal-nanowire-electrode-based perovskite solar cells: challenging issues and new opportunities. Adv Energy Mater, 7, 1602751(2017).

    [41] S Kang, J Jeong, S Cho et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J Mater Chem A, 7, 1107(2019).

    [42] K K Sears, M Fievez, M Gao et al. ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes. Sol RRL, 1, 1700059(2017).

    [43] Y Li, L Meng, Y Yang et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun, 7, 10214(2016).

    [44] P Li, Z Wu, H Hu et al. Efficient flexible perovskite solar cells using low-cost cu top and bottom electrodes. ACS Appl Mater Interfaces, 12, 26050(2020).

    [45] M Li, W W Zuo, A G Ricciardulli et al. Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source. Adv Mater, 32, 2003422(2020).

    [46] Z K Liu, P You, C Xie et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 28, 151(2016).

    [47] J Zhang, X G Hu, H Li et al. High-performance ITO-free perovskite solar cells enabled by single-walled carbon nanotube films. Adv Funct Maters, 31, 2104396(2021).

    [48] H Lu, J Sun, H Zhang et al. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale, 8, 5946(2016).

    [49] G Jeong, D Koo, J Seo et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett, 20, 3718(2020).

    [50] H Yang, H C Kwon, S Ma et al. Energy level-graded Al-doped ZnO protection layers for copper nanowire-based window electrodes for efficient flexible perovskite solar cells. ACS Appl Mater Interfaces, 12, 13824(2020).

    [51] J Yoon, H Sung, G Lee et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci, 10, 337(2017).

    [52] I Jeon, T Chiba, C Delacou et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett, 15, 6665(2015).

    [53] C Peng, H Su, J Li et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode. Sol Energy Mater Sol Cells, 230, 111226(2021).

    [54] J Jin, J H Li, Q D Tai et al. Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. J Power Sources, 482, 228953(2021).

    [55] I Jeon, J Yoon, N Ahn et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J Phys Chem Lett, 8, 5395(2017).

    [56] B J Worfolk, S C Andrews, S Park et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc Natl Acad Sci, 112, 14138(2015).

    [57] X Fan, W Nie, H Tsai et al. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci, 6, 1900813(2019).

    [58] C Hu, X Meng, L Zhang et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule, 3, 2205(2019).

    [59] N J Jeon, H Na, E H Jung et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 3, 682(2018).

    [60] J Chung, S S Shin, K Hwang et al. Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer. Energy Environ Sci, 13, 4854(2020).

    [61] J H Heo, M H Lee, H J Han et al. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells. J Mater Chem A, 4, 1572(2016).

    [62] D Yang, R Yang, J Zhang et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ Sci, 8, 3208(2015).

    [63] K Huang, Y Peng, Y Gao et al. High-performance flexible perovskite solar cells via precise control of electron transport layer. Adv Energy Mater, 9, 1901419(2019).

    [64] S Y Park, M Y Baek, Y Ju et al. Simultaneous ligand exchange fabrication of flexible perovskite solar cells using newly synthesized uniform tin oxide quantum dots. J Physl Chem Lett, 9, 5460(2018).

    [65] D Yang, R Yang, K Wang et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun, 9, 3239(2018).

    [66] S S Shin, W S Yang, E J Yeom et al. Tailoring of electron-collecting oxide nanoparticulate layer for flexible perovskite solar cells. J Phys Chem Lett, 7, 1845(2016).

    [67] D Liu, T L Kelly. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics, 8, 133(2014).

    [68] X Zhao, L Tian, T Liu et al. Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. J Mater Chem A, 7, 1509(2019).

    [69] U Ryu, S Jee, J S Park et al. Nanocrystalline titanium metal–organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano, 12, 4968(2018).

    [70] D Yang, R Yang, X Ren et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv Mater, 28, 5206(2016).

    [71] C Gong, L Zhang, X Meng et al. A non-wetting and conductive polyethylene dioxothiophene hole transport layer for scalable and flexible perovskite solar cells. Sci China Chem, 64, 834(2021).

    [72] T Xue, G Chen, X Hu et al. Mechanically robust and flexible perovskite solar cells via a printable and gelatinous interface. ACS Appl Mater Interfaces, 13, 19959(2021).

    [73] P Ru, E Bi, Y Zhang et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv Energy Mater, 10, 1903487(2020).

    [74] M Zhong, Y Liang, J Zhang et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer. J Mater Chem A, 7, 6659(2019).

    [75] B J Kim, M C Kim, D G Lee et al. Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv Mater Interfaces, 5, 1800993(2018).

    [76] T Jeon, H M Jin, S H Lee et al. Laser crystallization of organic-inorganic hybrid perovskite solar cells. ACS Nano, 10, 7907(2016).

    [77] J Feng, Y Jiao, H Wang et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy Environ Sci, 14, 3035(2021).

    [78] X Hu, X Meng, X Yang et al. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci Bull, 66, 527(2021).

    [79] P You, G J Li, G Q Tang et al. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ Sci, 13, 1187(2020).

    [80] C Bi, B Chen, H Wei et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 29, 1605900(2017).

    [81] Q Dong, M Chen, Y Liu et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 5, 1587(2021).

    [82] L Rao, X Meng, S Xiao et al. Wearable tin-based perovskite solar cells achieved by a crystallographic size effect. Angew Chem Int Ed, 60, 14693(2021).

    [83] N R Jiang, Y F Wang, Q F Dong et al. Enhanced efficiency and mechanical robustness of flexible perovskite solar cells by using HPbI3 additive. Sol RRL, 5, 2000821(2021).

    [84] F C Krebs, T Tromholt, M Jørgensen. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2, 873(2010).

    [85] S Das, B Yang, G Gu et al. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon, 2, 680(2015).

    [86] Y Galagan, F Di Giacomo, H Gorter et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 8, 1801935(2018).

    [87] Y Y Kim, T Y Yang, R Suhonen et al. Gravure-printed flexible perovskite solar cells: toward roll-to-roll manufacturing. Adv Sci, 6, 1802094(2019).

    [88] T Bu, J Li, F Zheng et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun, 9, 4609(2018).

    [89] J E Kim, S S Kim, C Zuo et al. Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Adv Funct Mater, 29, 1809194(2019).

    [90] Z Wang, L Zeng, C Zhang et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv Funct Mater, 30, 2001240(2020).

    [91] P Ma, Y Lou, S Cong et al. Malleability and pliability of silk-derived electrodes for efficient deformable perovskite solar cells. Adv Energy Mater, 10, 1903357(2020).

    [92] H Li, W Wang, Y Yang et al. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano, 14, 1560(2020).

    [93] S Kim, H Oh, I Jeong et al. Influence of a solvent trap in ITO/PEN substrates on the performance of flexible perovskite solar cells and light-emitting diodes. ACS Appl Electron Mater, 3, 3207(2021).

    [94] K Zhu, Z Lu, S Cong et al. Ultraflexible and lightweight bamboo-derived transparent electrodes for perovskite solar cells. Small, 15, 1902878(2019).

    [95] L Gao, L Chao, M Hou et al. Flexible, transparent nanocellulose paper-based perovskite solar cells. npj Flex Electron, 3, 4(2019).

    Guanqi Tang, Feng Yan. Flexible perovskite solar cells: Materials and devices[J]. Journal of Semiconductors, 2021, 42(10): 101606
    Download Citation