• Journal of Inorganic Materials
  • Vol. 36, Issue 2, 168 (2021)
Yanxiang WANG, Peiyang GAO, Xueyun FAN, Jiake LI, Pingchun GUO, Liqun HUANG, and Jian SUN
Author Affiliations
  • College of Materials Science and Engineering, Jingdezheng Ceramic Institute, Jingdezheng 333403, China
  • show less
    DOI: 10.15541/jim20190650 Cite this Article
    Yanxiang WANG, Peiyang GAO, Xueyun FAN, Jiake LI, Pingchun GUO, Liqun HUANG, Jian SUN. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2021, 36(2): 168 Copy Citation Text show less
    References

    [1] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [2] (2019). https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190923.pdf

    [3] Q DONG, J FANG Y, C SHAO Y et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

    [4] F LANG, O SHARGAIEVA, V BRUS V et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater., 30, 172905(2018).

    [5] Z YANG, M ZHONG, Y LIANG et al. SnO2-C60 pyrrolidine tris-acid (CPTA) as the electrontransport layer for highly efficient and stable planar Sn-based perovskite solar cells. Adv. Funct. Mater., 29, 1903621(2019).

    [6] Q JIANG, L ZHANG, H WANG et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy, 2, 16177(2017).

    [7] B XIONG L, C QIN M, G YANG et al. Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. J. Mater. Chem, A4, 8374-8383(2016).

    [8] Q JIANG, M CHU Z, Y WANG P et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater., 29, 1703852(2017).

    [9] H KIM, I SANG H, G PARK N. Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C, 118, 5615-5625(2014).

    [10] D YANG, X YANG R, K WANG et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun., 9, 3239(2018).

    [11] P ZHANG, J WU, T ZHANG et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater., 30, 1703737(2018).

    [12] M GRÄTZEL. The light and shade of perovskite solar cells. Nat. Mater., 13, 838-842(2014).

    [13] C CHUEH C, Z LI C. JEN A K Y. Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci., 8, 1160-1189(2015).

    [14] C CHEN Y, Q MENG, R ZHANG L et al. SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress. Journal of Energy Chemistry, 35, 144-167(2019).

    [15] T HU, T BECKER, N POURDAVOUD et al. Indium-free perovskite solar cells enabled by impermeable tin-oxide electron extraction layers. Adv. Mater., 29, 1606656(2017).

    [16] H CHEN, D LIU, Y WANG et al. Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res. Lett., 12, 1-6(2017).

    [17] J KE W, J FANG G, Q LIU et al. Low-temperature solution- processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc., 137, 6730-6733(2015).

    [18] L WANG C, X XIAO C. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater., 7, 1700414(2017).

    [19] Q JIANG, Y ZHAO, X ZHANG et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460-466(2019).

    [20] I SAIDAMINOV M, J KIM, A JAIN et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy, 3, 648-654(2018).

    [22] Q LIU, X ZHANG, Y LI C et al. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells. Appl. Phys. Lett., 115, 143903(2019).

    [23] J RAHUL R, P ASIT, S ARJUN et al. Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A, 6, 1037-1047(2018).

    [24] Z TEBBY, T UDDIN, Y NICOLAS et al. Low-temperature UV processing of nanoporous SnO2 layers for dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 3, 1485-1491(2011).

    [25] H TRAN V, B AMBADE R, B AMBADE S et al. Low-temperature solution-processed SnO2 nanoparticles as cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces, 9, 1645-1653(2017).

    [26] X REN, D YANG, Z YANG et al. Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces, 9, 2421-2429(2017).

    [27] J JEON N, H NA, H JUNG E et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 3, 682-689(2018).

    [28] Y LEE, S PAEK, T CHO K et al. Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A, 5, 12729-12734(2017).

    [29] Y LEE, S LEE, G SEO et al. Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer. Adv. Sci., 5, 1800130(2018).

    [30] G XING, N MATHEWS, S SUN et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013).

    [31] D YANG, R YANG, J ZHANG et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci., 8, 3208-3214(2015).

    [32] S YANG, W YUE, J ZHU et al. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater., 23, 3570-3576(2013).

    [33] A MAHMUD M, K ELUMALAI N, B UPAMA M et al. Single vs mixed organic cation for low temperature processed perovskite solar cells. Electrochim. Acta., 222, 1510-1521(2016).

    [34] W WANG, Z ZHANG, Y CAI et al. Enhanced performance of CH3NH3PbI3-xClx perovskite solar cells by CH3NH3 modification of TiO2-perovskite layer interface. Nanoscale Res. Lett., 11, 316(2016).

    [35] Z YU, B CHEN, P LIU et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Adv. Funct. Mater., 26, 4866-4873(2016).

    [36] M BAG, A RENNA L, Y ADHIKARI R et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc., 137, 13130-13137(2015).

    [37] M AZPIROZ J, E MOSCONI, J BISQUERT et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci., 7, 2118-2127(2015).

    Yanxiang WANG, Peiyang GAO, Xueyun FAN, Jiake LI, Pingchun GUO, Liqun HUANG, Jian SUN. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2021, 36(2): 168
    Download Citation