• Journal of Inorganic Materials
  • Vol. 35, Issue 11, 1277 (2020)
Dong XU1、2, Yufang ZHU1、2, Yuanyi ZHENG3, Yu LUO2、4、*, and Hangrong CHEN2、*
Author Affiliations
  • 1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 3Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
  • 4School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.15541/jim20200016 Cite this Article
    Dong XU, Yufang ZHU, Yuanyi ZHENG, Yu LUO, Hangrong CHEN. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma[J]. Journal of Inorganic Materials, 2020, 35(11): 1277 Copy Citation Text show less
    References

    [1] J SUVA L, C WASHAM, W NICHOLAS R et al. Bone metastasis: mechanisms and therapeutic opportunities. Nature Reviews Endocrinology, 7, 208-218(2011).

    [2] E COLEMAN R. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer. Res., 12, 6243-6249(2006).

    [3] R MARLOW, G HONETH, S LOMBARDI et al. A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res, 73, 6886-6899(2013).

    [4] D ISSELS R. Hyperthermia adds to chemotherapy. Eur. J. Cancer., 44, 2546-2554(2008).

    [5] S WANG, Y CHEN, X LI et al. Injectable 2D MoS2 -integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia. Adv. Mater., 27, 7117-7122(2015).

    [6] Y CHEN, L JIANG, R WANG et al. Injectable smart phase- transformation implants for highly efficient in vivo magnetic- hyperthermia regression of tumors. Adv. Mater., 26, 7468-7473(2014).

    [7] Q ZHANG Z, C SONG S. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials, 106, 13-23(2016).

    [8] H CHEN W, F LUO G, Q LEI et al. Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy. ACS Nano, 11, 1419-1431(2017).

    [9] F GAO, W XIE, Y MIAO et al. Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention. Adv. Healthc. Mater., 8, 1900203(2019).

    [10] T JANG J, J LEE, J SEON et al. Giant magnetic heat induction of magnesium-doped gamma-Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Adv. Mater., 30, 1704362(2018).

    [11] A JIANG, Y LIU, L MA et al. Biocompatible heat-shock protein inhibitor-delivered flowerlike short-wave infrared nanoprobe for mild temperature-driven highly efficient tumor ablation. ACS Appl. Mater. Interfaces, 11, 6820-6828(2019).

    [12] D LIU, L MA, Y AN et al. Thermoresponsive nanogel-encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Advanced Functional Materials, 26, 4749-4759(2016).

    [13] C WANG, Y ZHANG, K GUO et al. Heat shock proteins in hepatocellular carcinoma: molecular mechanism and therapeutic potential. Int. J. Cancer, 138, 1824-1834(2016).

    [14] L WANG, C GAO, K LIU et al. Cypate-conjugated porous upconversion nanocomposites for programmed delivery of heat shock potein 70 small interfering RNA for gene silencing and photothermal ablation. Advanced Functional Materials, 26, 3480-3489(2016).

    [15] K YU, B LIANG, Y ZHENG et al. PMMA-Fe3O4 for internal mechanical support and magnetic thermal ablation of bone tumors. Theranostics, 9, 4192-4207(2019).

    [16] Y HU, R WANG, J LI et al. Facile synthesis of lactobionic acid-targeted iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of an orthotopic model of human hepatocellular carcinoma. Particle & Particle Systems Characterization, 34(2017).

    [17] Y HU, J LI, J YANG et al. Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomater. Sci, 3, 721-732(2015).

    [18] J LI, L ZHENG, H CAI et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials, 34, 8382-8392(2013).

    [19] R WANG, Y HU, Y YANG et al. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma. Journal of Nanoparticle Research, 19, 39(2017).

    [20] H ZHOU, J TANG, J LI et al. In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale, 9, 3040-3050(2017).

    [21] H LEE J, T JANG J, S CHOI J et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol., 6, 418-422(2011).

    [22] T JANG J, H NAH, H LEE J et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 48, 1234-1238(2009).

    [23] Y YANG, W ZHU, Z DONG et al. 1D Coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater., 29, 1703588-12(2017).

    [24] Y LIU, X SUO, H PENG et al. Multifunctional magnetic nanoplatform eliminates cancer stem cells via inhibiting the secretion of extracellular heat shock protein 90. Advanced Healthcare Materials, 8, 1900160(2019).

    Dong XU, Yufang ZHU, Yuanyi ZHENG, Yu LUO, Hangrong CHEN. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma[J]. Journal of Inorganic Materials, 2020, 35(11): 1277
    Download Citation