• Laser & Optoelectronics Progress
  • Vol. 56, Issue 9, 090004 (2019)
Hao Ma1、2、3, Yuanan Zhao1、2、3、4、*, and Jianda Shao1、2、3
Author Affiliations
  • 1 Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
  • 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3 Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China
  • 4 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • show less
    DOI: 10.3788/LOP56.090004 Cite this Article Set citation alerts
    Hao Ma, Yuanan Zhao, Jianda Shao. Fabrication and Application of All-Dielectric Nanoparticles[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090004 Copy Citation Text show less
    References

    [1] Zhang G Q, Lan C W, Bian H L et al. Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing[J]. Optics Express, 25, 22038-22045(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041493

    [2] Landau L D, Lifshitz E M. Steady current: chapter Ⅲ[M]. Landau L D, Lifshitz E M. Electrodynamics of Continuous Media. Oxford: Butterworth-Heinemann(1984).

    [3] Merlin R. Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism[J]. Proceedings of the National Academy of Sciences of the United States of America, 106, 1693-1698(2009). http://www.jstor.org/stable/40421658

    [4] Grigorenko A N, Geim A K, Gleeson H F et al. Nanofabricated media with negative permeability at visible frequencies[J]. Nature, 438, 335-338(2005). http://www.ncbi.nlm.nih.gov/pubmed/16292306?dopt=Abstract

    [5] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 1, 41-48(2007).

    [6] Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero (ENZ) media[J]. Physical Review B, 75, 075119(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000010000057000001&idtype=cvips&gifs=Yes

    [7] Hentschel M, Schäferling M, Weiss T et al. Three-dimensional chiral plasmonic oligomers[J]. Nano Lett, 12, 2542-2547(2012). http://www.ncbi.nlm.nih.gov/pubmed/22458608/

    [8] Plum E, Zhou J, Dong J et al. Metamaterial with negative index due to chirality[J]. Physical Review B, 79, 035407(2009). http://adsabs.harvard.edu/abs/2009PhRvB..79c5407P

    [9] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [10] Ren M X, Xu J J. Surface plasmon polariton enhanced nonlinearity and applications[J]. Laser & Optoelectronics Progress, 50, 080002(2013).

    [11] Kneipp K, Wang Y, Kneipp H et al. Single molecule detection using surface-enhanced raman scattering (SERS)[J]. Physical Review Letters, 78, 1667-1670(1997). http://xueshurefer.baidu.com/nopagerefer?id=2c69e652af29ff52e8ccc03509a2f552

    [12] Nie S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997). http://europepmc.org/abstract/MED/9027306

    [13] Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 52, 092401(2015).

    [14] Soukoulis C M, Koschny T, Zhou J F et al. Magnetic response of split ring resonators at terahertz frequencies[J]. Physica Status Solidi (b), 244, 1181-1187(2007). http://onlinelibrary.wiley.com/doi/10.1002/pssb.200674503/full

    [15] Hopkins B, Miroshnichenko A E, Kivshar Y S[M]. All-dielectric nanophotonic structures: exploring the magnetic component of light (Chapter 10)(2017).

    [16] Evlyukhin A B, Reinhardt C, Seidel A et al. Optical response features of Si-nanoparticle arrays[J]. Physical Review B, 82, 045404(2010). http://adsabs.harvard.edu/abs/2010PhRvB..82d5404E

    [17] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen[J]. Annalen Der Physik, 330, 377-445(1908).

    [18] Wheeler M S, Aitchison J S, Mojahedi M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies[J]. Physical Review B, 72, 193103(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000012000022000044000001&idtype=cvips&gifs=Yes

    [19] Popa B I, Cummer S A. Compact dielectric particles as a building block for low-loss magnetic metamaterials[J]. Physical Review Letters, 100, 207401(2008). http://europepmc.org/abstract/med/18518576

    [20] Schuller J A, Zia R, Taubner T et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 99, 107401(2007). http://www.ncbi.nlm.nih.gov/pubmed/17930407

    [21] Ginn J C, Brener I, Peters D W et al. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters, 108, 097402(2012). http://www.ncbi.nlm.nih.gov/pubmed/22463666

    [22] Rolly B, Bebey B, Bidault S et al. Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances[J]. Physical Review B, 85, 245432(2012). http://adsabs.harvard.edu/abs/2012PhRvB..85x5432R

    [23] Albella P, Poyli M A, Schmidt M K et al. Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers[J]. The Journal of Physical Chemistry C, 117, 13573-13584(2013). http://pubs.acs.org/doi/abs/10.1021/jp4027018

    [24] Dmitriev P A, Baranov D G, Milichko V A et al. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response[J]. Nanoscale, 8, 9721-9726(2016). http://www.ncbi.nlm.nih.gov/pubmed/27113352

    [25] Krasnok A, Glybovski S, Petrov M et al. Demonstration of the enhanced Purcell factor in all-dielectric structures[J]. Applied Physics Letters, 108, 211105(2016). http://www.tandfonline.com/servlet/linkout?suffix=CIT0038&dbid=16&doi=10.1080%2F09205071.2018.1487339&key=10.1063%2F1.4952740

    [26] Shcherbakov M R, Neshev D N, Hopkins B et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response[J]. Nano Letters, 14, 6488-6492(2014). http://www.ncbi.nlm.nih.gov/pubmed/25322350

    [27] Makarov S, Kudryashov S, Mukhin I et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast photoexcitation of dense electron-hole plasma[J]. Nano Letters, 15, 6187-6192(2015). http://europepmc.org/abstract/MED/26259100

    [28] Shcherbakov M R, Vabishchevich P P, Shorokhov A S et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures[J]. Nano Letters, 15, 6985-6990(2015). http://www.ncbi.nlm.nih.gov/pubmed/26393983

    [29] Baranov D G, Makarov S V, Milichko V A et al. Nonlinear transient dynamics of photoexcited resonant silicon nanostructures[J]. ACS Photonics, 3, 1546-1551(2016). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.6b00358

    [30] Maier S A. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Optics Express, 14, 1957-1964(2006). http://europepmc.org/abstract/MED/19503526

    [31] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 1, 438-483(2009).

    [32] Agio M. Optical antennas as nanoscale resonators[J]. Nanoscale, 4, 692-706(2012). http://www.ncbi.nlm.nih.gov/pubmed/22175063

    [33] Seok T J, Jamshidi A, Kim M et al. Radiation engineering of optical antennas for maximum field enhancement[J]. Nano Letters, 11, 2606-2610(2011). http://pubs.acs.org/doi/abs/10.1021/nl2010862

    [34] Khurgin J B. How to deal with the loss in plasmonics and metamaterials[J]. Nature Nanotechnology, 10, 2-6(2015). http://www.ncbi.nlm.nih.gov/pubmed/25559961

    [35] Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances[J]. Optics and Photonics News, 28, 24-31(2017). http://www.tandfonline.com/servlet/linkout?suffix=CIT0112&dbid=16&doi=10.1080%2F23746149.2017.1367628&key=10.1364%2FOPN.28.1.000024

    [36] Vuye G, Fisson S, Van V N et al. Temperature dependence of the dielectric function of silicon using in situ spectroscopic ellipsometry[J]. Thin Solid Films, 233, 166-170(1993). http://www.sciencedirect.com/science/article/pii/004060909390082Z

    [37] Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. Canada: John Wiley & Sons(1983).

    [38] Jorik V D G, Brenny B J M et al. . Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 24, 2047-2064(2016). http://europepmc.org/abstract/MED/26906780

    [39] Staude I, Miroshnichenko A E, Decker M et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 7, 7824-7832(2013). http://europepmc.org/abstract/med/23952969

    [40] Spinelli P, Verschuuren M A, Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications, 3, 692-692(2012). http://europepmc.org/articles/PMC3338005/

    [41] Shi L, Tuzer T U, Fenollosa R et al. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities[J]. Advanced Materials, 24, 5934-5938(2012). http://www.ncbi.nlm.nih.gov/pubmed/22927242

    [42] Proust J, Bedu F, Chenot S et al. Chemical alkaline etching of silicon Mie particles[J]. Advanced Optical Materials, 3, 1280-1286(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500146/pdf

    [43] Shi L, Harris J T, Fenollosa R et al. Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region[J]. Nature Communications, 4, 1904-1910(2013). http://europepmc.org/abstract/MED/23695698

    [44] Abbarchi M, Naffouti M, Vial B et al. Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting[J]. ACS Nano, 8, 11181-11190(2014). http://www.ncbi.nlm.nih.gov/pubmed/25365786

    [45] Naffouti M, David T, Benkouider A et al. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting[J]. Nanoscale, 8, 2844-2849(2016). http://europepmc.org/abstract/MED/26991596

    [46] Zhang P P, Yang B, Rugheimer P P et al. Influence of germanium on thermal dewetting and agglomeration of the silicon template layer in thin silicon-on-insulator[J]. Journal of Physics D: Applied Physics, 42, 175309(2009). http://www.ingentaconnect.com/content/iop/jphysd/2009/00000042/00000017/art175309

    [47] Fu Y H, Kuznetsov A I, Miroshnichenko A E et al. Directional visible light scattering by silicon nanoparticles[J]. Nature Communications, 4, 1527-1533(2013). http://www.nature.com/ncomms/journal/v4/n2/ncomms2538/metrics

    [48] Okamoto S, Inaba K, Iida T et al. Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials[J]. Scientific Reports, 4, 5186-5190(2014). http://www.nature.com/srep/2014/140605/srep05186/full/srep05186.html

    [49] Bohandy J, Kim B F, Adrian F J et al. Metal deposition at 532 nm using a laser transfer technique[J]. Journal of Applied Physics, 63, 1158-1162(1988). http://scitation.aip.org/content/aip/journal/jap/63/4/10.1063/1.340023

    [50] Zywietz U, Evlyukhin A B, Reinhardt C et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses[J]. Nature Communications, 5, 3402-3409(2014). http://www.nature.com/ncomms/2014/140304/ncomms4402/abs/ncomms4402.html

    [51] Cai W S, Shalaev V. Optical metamaterials: fundamentals and applications[M]. New York: Springer Science and Business Media(2009).

    [52] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 11, 23-36(2016).

    [53] Lewin L. Theelectrical constants of a material loaded with spherical particles[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 94, 65-68(1947). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5298931

    [54] Ahmadi A, Mosallaei H. Physical configuration and performance modeling of all-dielectric metamaterials[J]. Physical Review B, 77, 045104(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000077000004045104000001&idtype=cvips&gifs=Yes

    [55] Moitra P, Slovick B A, Li W et al. Large-scale all-dielectric metamaterial perfect reflectors[J]. ACS Photonics, 2, 692-698(2015). http://pubs.acs.org/doi/pdf/10.1021/acsphotonics.5b00148

    [56] Moitra P, Slovick B A, Zhi G Y et al. Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector[J]. Applied Physics Letters, 104, 171102(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6808349

    [57] Esfandyarpour M, Garnett E C, Cui Y et al. Metamaterial mirrors in optoelectronic devices[J]. Nature Nanotechnology, 9, 542-547(2014). http://europepmc.org/abstract/med/24952475

    [58] Schwanecke A S, Fedotov V A, Khardikov V V et al. Optical magnetic mirrors[J]. Journal of Optics A: Pure and Applied Optics, 9, L1-L2(2007).

    [59] Fedotov V A, Rogacheva A V, Zheludev N I et al. Mirror that does not change the phase of reflected waves[J]. Applied Physics Letters, 88, 091119(2006). http://scitation.aip.org/content/aip/journal/apl/88/9/10.1063/1.2179615

    [60] Wu C H, Khanikaev A B, Adato R et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 11, 69-75(2012). http://europepmc.org/abstract/MED/22081082

    [61] Piper J R, Fan S H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance[J]. ACS Photonics, 1, 347-353(2014). http://pubs.acs.org/doi/abs/10.1021/ph400090p

    [62] Zhang S P, Bao K, Halas N J et al. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011). http://pubs.acs.org/doi/abs/10.1021/nl200135r

    [63] Xu Z C, Li N, Duan B Y. Design of broadband spiral nanoantenna based on solar energy harvesting[J]. Acta Optica Sinica, 37, 0826003(2017).

    [64] Kim K, Kim J H, Park H et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring[J]. Journal of Controlled Release, 146, 219-227(2010). http://www.ncbi.nlm.nih.gov/pubmed/20403397

    [65] Krasnok A E, Miroshnichenko A E, Belov P A et al. Huygens optical elements and Yagi—Uda nanoantennas based on dielectric nanoparticles[J]. JETP Letters, 94, 593-598(2011). http://link.springer.com/article/10.1134/S0021364011200070

    [66] Krasnok A E, Miroshnichenko A E, Belov P A et al. All-dielectric optical nanoantennas[J]. Optics Express, 20, 20599-20604(2012). http://www.opticsinfobase.org/abstract.cfm?URI=oe-20-18-20599

    [67] Krasnok A E, Filonov D S, Simovski C R et al. Experimental demonstration of superdirective dielectric antenna[J]. Applied Physics Letters, 104, 133502(2014). http://scitation.aip.org/content/aip/journal/apl/104/13/10.1063/1.4869817

    [68] Krasnok A E, Simovski C R, Belov P A et al. Superdirective dielectric nanoantennas[J]. Nanoscale, 6, 7354-7361(2014). http://europepmc.org/abstract/med/24862185

    [69] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=23493714

    [70] Pors A, Nielsen M G, Eriksen R L et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 13, 829-834(2013). http://pubs.acs.org/doi/abs/10.1021/nl304761m

    [71] Fattal D, Li J J, Peng Z et al. Flat dielectric grating reflectors with focusing abilities[J]. Nature Photonics, 4, 466-470(2010). http://www.nature.com/nphoton/journal/v4/n7/abs/nphoton.2010.116.html

    [72] Khorasaninejad M, Aieta F, Kanhaiya P et al. Achromatic metasurface lens at teleco-mmunication wavelengths[J]. Nano Letters, 15, 5358-5362(2015). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26168329.aspx

    [73] Cao J G, Zhou Y X. Polarization modulation of terahertz wave by graphene metamaterial with grating structure[J]. Laser & Optoelectronics Progress, 55, 092501(2018).

    [74] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015). http://www.ncbi.nlm.nih.gov/pubmed/26322944?dopt=Abstract

    [75] Shalaev M I, Sun J B, Tsukernik A et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 15, 6261-6266(2015). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM26280735.aspx

    [76] Zhao Q, Zhou J, Zhang F et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 12, 60-69(2009). http://www.sciencedirect.com/science/article/pii/S1369702109703189

    [77] Decker M, Staude I, Falkner M et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 3, 813-820(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201400584/pdf

    [78] Spillane S M, Kippenberg T J, Vahala K J. Ultralow-threshold Raman laser using a spherical dielectric microcavity[J]. Nature, 415, 621-623(2002). http://www.ncbi.nlm.nih.gov/pubmed/11832940

    [79] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics[J]. Nature Photonics, 4, 535-544(2010).

    [80] Noskov R E, Krasnok A E, Kivshar Y S. Nonlinear metal-dielectric nanoantennas for light switching and routing[J]. New Journal of Physics, 14, 093005(2012). http://arxiv.org/abs/1205.6913

    [81] Wu Y Y, Zhang X P, Shan X Y et al. An ultrafast all-optical switch with silicon-based silica structure[J]. Laser & Optoelectronics Progress, 55, 041303(2018).

    [82] Sokolowski-Tinten K, von der Linde D. Generation of dense electron-hole plasmas in silicon[J]. Physical Review B, 61, 2643-2650(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000061000004002643000001&idtype=cvips&gifs=Yes

    [83] Yang Y M, Wang W Y, Boulesbaa A et al. Nonlinear fano-resonant dielectric metasurfaces[J]. Nano Letters, 15, 7388-7393(2015). http://europepmc.org/abstract/MED/26501777

    Hao Ma, Yuanan Zhao, Jianda Shao. Fabrication and Application of All-Dielectric Nanoparticles[J]. Laser & Optoelectronics Progress, 2019, 56(9): 090004
    Download Citation