• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2411001 (2021)
Jizhong Duan*, Xiaoxun He, Chang Liu, and Minghong Xie
Author Affiliations
  • Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650504, China
  • show less
    DOI: 10.3788/LOP202158.2411001 Cite this Article Set citation alerts
    Jizhong Duan, Xiaoxun He, Chang Liu, Minghong Xie. Method of Magnetic Resonance Imaging Reconstruction Based on Lp-Norm Joint Total Variation[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2411001 Copy Citation Text show less
    References

    [1] Yang B, Miao P X, Shi Y C et al. Theoretical and experimental studies on classic physical picture of two-level magnetic resonance[J]. Chinese Journal of Lasers, 47, 1012001(2020).

    [2] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [3] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [4] Cheng D Q, Shao L R, Li Y et al. Multi-scale block adaptive sampling rate compression sensing algorithm[J]. Laser & Optoelectronics Progress, 56, 031005(2019).

    [5] Lustig M, Donoho D, Pauly J M. Sparse MRI:the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 58, 1182-1195(2007).

    [6] Lustig M, Donoho D L, Santos J M et al. Compressed sensing MRI[J]. IEEE Signal Processing Magazine, 25, 72-82(2008).

    [7] Yin W T, Osher S, Goldfarb D et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 1, 143-168(2008).

    [8] Wang J, Zhang X Y, Cai Y F et al. CT image segmentation method combining wavelet transform and RSF model[J]. Acta Optica Sinica, 40, 2110003(2020).

    [9] Wang Y L, Yang J F, Yin W T et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 1, 248-272(2008).

    [10] Ban X Z, Li Z H, Li B B et al. Sparse image reconstruction based on improved total generalized variation[J]. Laser & Optoelectronics Progress, 55, 111103(2018).

    [11] Pruessmann K P. Encoding and reconstruction in parallel MRI[J]. NMR in Biomedicine, 19, 288-299(2006).

    [12] Sodickson D K, Manning W J. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays[J]. Magnetic Resonance in Medicine, 38, 591-603(1997).

    [13] Pruessmann K P, Weiger M, Scheidegger M B et al. SENSE: sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 42, 952-962(1999).

    [14] Kyriakos W E, Panych L P, Kacher D F et al. Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP)[J]. Magnetic Resonance in Medicine, 44, 301-308(2000).

    [15] Jakob P M, Griswold M A, Edelman R R et al. AUTO-SMASH: a self-calibrating technique for SMASH imaging[J]. Magnetic Resonance Materials in Physics, Biology and Medicine, 7, 42-54(1998).

    [16] Griswold M A, Jakob P M, Heidemann R M et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine, 47, 1202-1210(2002).

    [17] Lustig M, Pauly J M. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magnetic Resonance in Medicine, 64, 457-471(2010).

    [18] Lustig M, Alley M, Vasanawala S et al. L1-SPIRiT: autocalibrating parallel imaging compressed sensing[EB/OL]. [2020-12-15]. https://people.eecs.berkeley.edu/~mlustig/l1SPIRiT.pdf

    [19] Mathew R S, Paul J S. Sparsity promoting adaptive regularization for compressed sensing parallel MRI[J]. IEEE Transactions on Computational Imaging, 4, 147-159(2018).

    [20] Holme H C M, Rosenzweig S, Ong F et al. ENLIVE: an efficient nonlinear method for calibrationless and robust parallel imaging[J]. Scientific Reports, 9, 3034(2019).

    [21] Haldar J P. Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI[J]. IEEE Transactions on Medical Imaging, 33, 668-681(2014).

    [22] Haldar J P. Autocalibrated LORAKS for fast constrained MRI reconstruction[C]. //2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), April 16-19, 2015, Brooklyn, NY, USA., 910-913(2015).

    [23] Haldar J P, Zhuo J W. P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data[J]. Magnetic Resonance in Medicine, 75, 1499-1514(2016).

    [24] Duan J Z, Bao Z W, Liu Y. Eigenvector-based SPIRiT parallel MR imaging reconstruction based on ℓp pseudo-norm joint total variation[J]. Magnetic Resonance Imaging, 58, 108-115(2019).

    [25] Mohsin Y Q, Ongie G, Jacob M. Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery[J]. IEEE Transactions on Medical Imaging, 34, 2417-2428(2015).

    [26] Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)[J]. Magnetic Resonance in Medicine, 57, 1196-1202(2007).

    [27] Sawyer A M, Lustig M, Alley M et al. Creation of fully sampled MR data repository for compressed sensing of the knee[EB/OL]. [2020-12-15]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.402.206

    Jizhong Duan, Xiaoxun He, Chang Liu, Minghong Xie. Method of Magnetic Resonance Imaging Reconstruction Based on Lp-Norm Joint Total Variation[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2411001
    Download Citation