• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0116002 (2024)
Liangbi Su1、†,*, Fengkai Ma1、2、†, Zhen Zhang1, Dapeng Jiang1, Zhonghan Zhang1, Huamin Kou1, Zhen Li2, Zhenqiang Chen2, and Jun Xu3
Author Affiliations
  • 1State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • 2Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, Guangdong , China
  • 3Institute for Advanced Study, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.3788/LOP231362 Cite this Article Set citation alerts
    Liangbi Su, Fengkai Ma, Zhen Zhang, Dapeng Jiang, Zhonghan Zhang, Huamin Kou, Zhen Li, Zhenqiang Chen, Jun Xu. Local Structure Design and Application of Rare-Earth Doped Alkaline Earth Fluorite Laser Crystal (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116002 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Kaminskii A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Reviews, 1, 93-177(2007).

    [3] Norvig P, Relman D, Goldstein D et al. 2020 visions[J]. Nature, 463, 26-32(2010).

    [4] Xue Y Y, Xu X D, Su L B et al. Research progress of mid-infrared laser crystals[J]. Journal of Synthetic Crystals, 49, 1347-1360(2020).

    [5] Li N, Liu B, Shi J J et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 34, 573-589(2019).

    [6] Xu C L, Ma F K, Zhang Z et al. Research progress of visible laser crystals activated by Pr3+ ions[J]. Chinese Journal of Luminescence, 43, 1690-1704(2022).

    [7] Cao W H, Li Z, Shi C K et al. Overview of research and development of Pr3+ doped solid-state lasers[J]. Opto-Electronic Engineering, 49, 210364(2022).

    [8] Zhang Z, Su L B. Research progress of near 3 μm mid-infrared laser based on Er3+ doped single crystals[J]. Journal of Synthetic Crystals, 49, 1361-1368(2020).

    [9] Kaminskii A A. Modern developments in the physics of crystalline laser materials[J]. Physica Status Solidi (a), 200, 215-296(2003).

    [10] Wang J Y, Yu H H, Wu Y C et al. Recent developments in functional crystals in China[J]. Engineering, 1, 192-210(2015).

    [11] Xu J. Development and thinking of laser crystal materials[J]. Laser & Optoelectronics Progress, 43, 17-24(2006).

    [12] Liu W Y, Lu D Z, Pan S L et al. Ligand engineering for broadening infrared luminescence of Kramers ytterbium ions in disordered sesquioxides[J]. Crystal Growth & Design, 19, 3704-3713(2019).

    [13] Lin L T, Wang Y P, Lan B J et al. Coordination geometry engineering in a doped disordered matrix for tunable optical response[J]. The Journal of Physical Chemistry C, 123, 29343-29352(2019).

    [14] Ma F K, Jiang D P, Zhang Z et al. Tailoring the local lattice distortion of Nd3+ by codoping of Y3+ through first principles calculation for tuning the spectroscopic properties[J]. Optical Materials Express, 9, 4256-4272(2019).

    [15] Xie G W, Fang L Z, Xia H P et al. Effective enhancement of ~2.86 µm mid-infrared emission of Na5Y9F32 single crystal co-doped Ho3+/Pr3+ introduced by Gd3+ ions[J]. Journal of Alloys and Compounds, 948, 169758(2023).

    [16] Yu H H, Pan Z B, Zhang H J et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 50, 648-668, 583(2021).

    [17] Zheng L W, Wu H, Zhang L L et al. Determination of cross-relaxation efficiency based on spectroscopy in thulium-doped rare-earth sesquioxides[J]. Ceramics International, 49, 11060-11066(2023).

    [18] Ding S J, Zhang Q L, Peng F et al. Crystal growth, spectral properties and continuous wave laser operation of new mixed Nd∶GdYNbO4 laser crystal[J]. Journal of Alloys and Compounds, 698, 159-163(2017).

    [19] Xia Z G, Ma C G, Molokeev M S et al. Chemical unit cosubstitution and tuning of photoluminescence in the Ca2(Al1-xMgx)(Al1-xSi1+x)O7∶Eu2+ phosphor[J]. Journal of the American Chemical Society, 137, 12494-12497(2015).

    [20] Hu C, Feng X Q, Li J et al. Role of Y admixture in (Lu1-xYx)3Al5O12∶Pr ceramic scintillators free of host luminescence[J]. Physical Review Applied, 6, 064026(2016).

    [21] Cao W Z, Mei D J, Yang Y et al. From CuFeS2 to Ba6Cu2FeGe4S16: rational band gap engineering achieves large second-harmonic-generation together with high laser damage threshold[J]. Chemical Communications, 55, 14510-14513(2019).

    [22] Zhu J F, Wei L, Tian W L et al. Generation of sub-100 fs pulses from mode-locked Nd, Y∶SrF2 laser with enhancing SPM[J]. Laser Physics Letters, 13, 055804(2016).

    [23] Qin Z P, Xie G Q, Ma J et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 39, 1737-1739(2014).

    [24] Chen J C, Peng Y J, Zhang Z X et al. Demonstration of a diode pumped Nd, Y co-doped SrF2 crystal based, high energy chirped pulse amplification laser system[J]. Optics Communications, 382, 201-204(2017).

    [25] Tang X X, Qiu J S, Fan Z W et al. Diode-pumped medium-aperture-size square Nd, Y∶CaF2 rod amplifier for Inertial Confinement Fusion laser drivers[J]. Optical Materials, 58, 445-448(2016).

    [26] Ma F K, Su F, Zhou R F et al. The defect aggregation of RE3+ (RE=Y, La~Lu) in MF2 (M=Ca, Sr, Ba) fluorites[J]. Materials Research Bulletin, 125, 110788(2020).

    [27] Andeen C G, Link D, Fontanella J. Cluster-associated relaxations in rare-earth-doped calcium fluoride[J]. Physical Review B, 16, 3762-3767(1977).

    [28] Andeen C G, Fontanella J J, Wintersgill M C et al. Clustering in rare-earth-doped alkaline earth fluorides (dielectric relaxation)[J]. Journal of Physics C: Solid State Physics, 14, 3557-3574(1981).

    [29] den Hartog H W, Pen K F, Meuldijk J. Defect structure and charge transport in solid solutions Ba1-xLaxF2+x[J]. Physical Review B, 28, 6031-6040(1983).

    [30] Kaminskii A A, Osico V V, Prochorov A M et al. Spectral investigation of the stimulated radiation of Nd3+ in CaF2-YF3[J]. Physics Letters, 22, 419-421(1966).

    [31] Voronko Y K, Osiko V V, Shcherbakov I A. Investigation of the interaction of Nd3+ ions in CaF2, SrF2, and BaF2 crystals (type I)[J]. Soviet Physics-JETP, 28, 838-844(1969).

    [32] Cheetham A K, Fender B F, Cooper M J. Defect structure of calcium fluoride containing excess anions I. Bragg scattering[J]. Journal of Physics C: Solid State Physics, 4, 3107-3121(1971).

    [33] Catlow C R A. Defect clusters in doped fluorite crystals[J]. Journal of Physics C: Solid State Physics, 6, L64-L70(1973).

    [34] Corish J, Catlow C R A, Jacobs P W M et al. Defect aggregation in anion-excess fluorites. dopant monomers and dimers[J]. Physical Review B, 25, 6425-6438(1982).

    [35] Bendall P J, Catlow C R A, Corish J et al. Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms[J]. Journal of Solid State Chemistry, 51, 159-169(1984).

    [36] Catlow C R A, Chadwick A V, Greaves G N et al. Direct observations of the dopant environment in fluorites using EXAFS[J]. Nature, 312, 601-604(1984).

    [37] Laval J P, Frit B. Defect structure of anion-excess fluorite-related Ca1-xYxF2+x solid solutions[J]. Journal of Solid State Chemistry, 49, 237-246(1983).

    [38] Bevan D J M, Strähle J, Greis O. The crystal structure of tveitite, an ordered yttrofluorite mineral[J]. Journal of Solid State Chemistry, 44, 75-81(1982).

    [39] Lacroix B, Genevois C, Doualan J L et al. Direct imaging of rare-earth ion clusters in Yb∶CaF2[J]. Physical Review B, 90, 125124(2014).

    [40] Cai J J, Ma C G, Yin M. Factors influencing the structure of the complex-defects in AF2∶RE3+ (A=Ca, Sr and Ba): a first-principles study[J]. Journal of Luminescence, 250, 119058(2022).

    [41] Sulyanova E A, Sobolev B P. The universal defect cluster architecture of fluorite-type nanostructured crystals[J]. CrystEngComm, 24, 3762-3769(2022).

    [42] Ma F K, Zhang Z, Jiang D P et al. Neodymium cluster evolution in fluorite laser crystal: a combined DFT and synchrotron X-ray absorption fine structure study[J]. Crystal Growth & Design, 22, 4480-4493(2022).

    [43] Ma F K, Jiang D P, Su L B et al. Spectral properties and highly efficient continuous-wave laser operation in Nd-doped Sr1-xYxF2+x crystals[J]. Optics Letters, 41, 501-503(2016).

    [44] Ma W W, Su L B, Xu X D et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er, Pr∶CaF2 crystal[J]. Journal of Alloys and Compounds, 695, 3370-3375(2017).

    [45] Wang Y H, Li Z, Yin H et al. Enhanced ~3 μm mid-infrared emissions of Ho3+ via Yb3+ sensitization and Pr3+ deactivation in Lu3Al5O12 crystal[J]. Optical Materials Express, 8, 1882-1889(2018).

    [46] Tang Q Y, Ma F K, Zhang Z et al. Rare-earth induced nonlinear structural evolutions in fluorite solid solution crystals[J]. Optical Materials Express, 11, 3870-3879(2021).

    [47] Ma F K, Zhou H Q, Tang Q Y et al. Clusters modification for tunable photoluminescence in Nd3+∶SrF2 crystal[J]. Journal of Alloys and Compounds, 899, 162913(2022).

    [48] Gao Z Y, Zhu J F, Wang J L et al. Diode-pumped Kerr-lens mode-locked femtosecond Yb∶YAG ceramic laser[C](2016).

    [49] Pirzio F, Fregnani L, Volpi A et al. 87 fs pulse generation in a diode-pumped semiconductor saturable absorber mirror mode-locked Yb∶YLF laser[J]. Applied Optics, 55, 4414-4417(2016).

    [50] Bain F M, Lagatsky A A, Brown C T A et al. High-power Kerr-lens mode-locked ytterbium lasers[J]. Proceedings of SPIE, 6871, 68712L(2008).

    [51] Akbari R, Fedorova K A, Rafailov E U et al. Diode-pumped ultrafast Yb∶KGW laser with 56 fs pulses and multi-100 kW peak power based on SESAM and Kerr-lens mode locking[J]. Applied Physics B, 123, 123(2017).

    [52] Paradis C, Modsching N, Wittwer V J et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb∶Lu2O3 thin-disk laser[J]. Optics Express, 25, 14918-14925(2017).

    [53] Lucca A, Debourg G, Jacquemet M et al. High-power diode-pumped Yb3+∶CaF2 femtosecond laser[J]. Optics Letters, 29, 2767-2769(2004).

    [54] Sévillano P, Machinet G, Dubrasquet R et al. High-power sub-50 fs, Kerr-lens mode-locked Yb∶CaF2 oscillator pumped by a high-brightness fiber-laser[C](2014).

    [55] Kahle M, Körner J, Hein J et al. Performance of a quantum defect minimized disk laser based on cryogenically cooled Yb∶CaF2[J]. Optics & Laser Technology, 92, 19-23(2017).

    [56] Wentsch K S, Weichelt B, Günster S et al. Yb∶CaF2 thin-disk laser[J]. Optics Express, 22, 1524-1532(2014).

    [57] Su L B, Xu J, Li H J et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal[J]. Optics Letters, 30, 1003-1005(2005).

    [58] Su L B, Xu J, Li H J et al. Sites structure and spectroscopic properties of Yb-doped and Yb, Na-codoped CaF2 laser crystals[J]. Chemical Physics Letters, 406, 254-258(2005).

    [59] Xu J, Su L B, Zhang D et al. Thermal, spectroscopic and laser properties of Yb3+, Na+∶CaF2 single crystals[J]. Journal of Crystal Growth, 291, 267-271(2006).

    [60] Pugžlys A, Andriukaitis G, Sidorov D et al. Spectroscopy and lasing of cryogenically cooled Yb, Na∶CaF2[J]. Applied Physics B, 97, 339-350(2009).

    [61] Pugžlys A, Sidorov D, Ali T et al. Spectroscopic and lasing properties of cryogenically cooled Yb, Na∶CaF2[C], MF4(2008).

    [62] Ge W Q, Chai L, Yan J et al. High power continuous-wave operation and dynamics of soliton mode-locked Yb, Na∶CaF2 lasers at room temperature[J]. IEEE Journal of Quantum Electronics, 47, 977-983(2011).

    [63] Su L B, Xu J, Xue Y H et al. Low-threshold diode-pumped Yb3+, Na+∶CaF2 self-Q-switched laser[J]. Optics Express, 13, 5635-5640(2005).

    [64] Du J, Liang X Y, Wang Y G et al. 1 ps passively mode-locked laser operation of Na, Yb∶CaF2 crystal[J]. Optics Express, 13, 7970-7975(2005).

    [65] Pugžlys A, Andriukaitis G, Baltuška A et al. 1-kHz-repetition-rate millijoule femtosecond cryocooled DPSS Yb, Na∶CaF2 regenerative amplifier[C], WD3(2009).

    [66] Siebold M, Hornung M, Boedefeld R et al. Terawatt diode-pumped Yb∶CaF2 laser[J]. Optics Letters, 33, 2770-2772(2008).

    [67] Aus der Au J, Kopf D, Morier-Genoud F et al. 60-fs pulses from a diode-pumped Nd∶glass laser[J]. Optics Letters, 22, 307-309(1997).

    [68] Hu L L, Chen S B, Tang J P et al. Large aperture N31 neodymium phosphate laser glass for use in a high power laser facility[J]. High Power Laser Science and Engineering, 2, e1(2014).

    [69] He D B, Kang S A, Zhang L Y et al. Research and development of new neodymium laser glasses[J]. High Power Laser Science and Engineering, 5, e1(2017).

    [70] Yang S D, Yin D J, Gan Z B et al. Thermal effect of high energy repetition rate Nd∶glass laser[J]. Chinese Journal of Lasers, 47, 0901004(2020).

    [71] Ma F K, Jiang D P, Tang F et al. Modulated photoluminescence parameters of neodymium in Sr0.95Y0.05F2.05 laser crystal[J]. Optical Materials Express, 7, 3231-3237(2017).

    [72] Ma F K, Jiang D P, Su L B et al. The codopant assisted tunable photoluminescence and highly efficient CW lasers in Nd3+∶SrF2 crystal[J]. Journal of Luminescence, 219, 116911(2020).

    [73] Iffländer R, Iffländer R. Laser glasses[M]. Solid-state lasers for materials processing. Springer series in optical sciences, 77, 311-318(2001).

    [74] Yu H H, Liu J H, Zhang H J et al. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer[J]. Laser & Photonics Reviews, 8, 847-864(2014).

    [75] Barnes N P, Storm M E, Cross P L et al. Efficiency of Nd laser materials with laser diode pumping[J]. IEEE Journal of Quantum Electronics, 26, 558-569(1990).

    [76] Shen H Y, Zeng R R, Zhou Y P et al. Simultaneous multiple wavelength laser action in various neodymium host crystals[J]. IEEE Journal of Quantum Electronics, 27, 2315-2318(1991).

    [77] Demidovich A A, Shkadarevich A P, Danailov M B et al. Comparison of cw laser performance of Nd∶KGW, Nd∶YAG, Nd∶BEL, and Nd∶YVO4 under laser diode pumping[J]. Applied Physics B, 67, 11-15(1998).

    [78] Li D Z, Xu X D, Cheng S S et al. Polarized spectral properties of Nd3+ ions in CaYAlO4 crystal[J]. Applied Physics B, 101, 199-205(2010).

    [79] Li S T, Zhang X Y, Wang Q P et al. A discussion on the effective stimulated emission cross section of R2→Y3 transition of Nd∶YAG crystal[J]. Laser & Infrared, 34, 157-158(2004).

    [80] Pan S D. Study on crystal characteristics of Nd∶YLF and all-solid-state laser[D](2007).

    [81] Zhang F, Fan X W, Liu J et al. Dual-wavelength mode-locked operation on a novel Nd3+, Gd3+∶SrF2 crystal laser[J]. Optical Materials Express, 6, 1513-1519(2016).

    [82] Zhang F, Liu J J, Liu J et al. Efficient continuous-wave and 739 fs mode-locked laser on a novel Nd3+, La3+co-doped SrF2 disordered crystal[J]. Laser Physics Letters, 13, 095802(2016).

    [83] Deng W P, Yang T, Cao J P et al. High-efficiency 1064 nm nonplanar ring oscillator Nd∶YAG laser with diode pumping at 885 nm[J]. Optics Letters, 43, 1562-1565(2018).

    [84] Li X D, Yu X, Chen F et al. Laser properties of continuous-grown Nd∶GdVO4/GdVO4 and Nd∶YVO4/YVO4 composite crystals under direct pumping[J]. Optics Express, 17, 12869-12874(2009).

    [85] Deana A M, Wetter N U. Double-beam, mode-controlling diode side-pumped Nd∶YLF laser with near 60% efficiency[J]. Proceedings of SPIE, 9342, 93420Z(2015).

    [86] Ma J, Pan Z B, Cai H Q et al. Sub-80 femtosecond pulses generation from a diode-pumped mode-locked Nd∶Ca3La2(BO3)4 disordered crystal laser[J]. Optics Letters, 41, 1384-1387(2016).

    [87] Krennrich D, Knappe R, Henrich B et al. A comprehensive study of Nd∶YAG, Nd∶YAlO3, Nd∶YVO4 and Nd∶YGdVO4 lasers operating at wavelengths of 0.9 and 1.3 μm. Part 1: cw-operation[J]. Applied Physics B, 92, 165-174(2008).

    [88] Guo Y D, Peng Q J, Bo Y et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd∶YAG slab laser based on a stable-unstable hybrid cavity[J]. Optics Letters, 45, 1136-1139(2020).

    [89] Goodberlet J, Jacobson J, Fujimoto J G et al. Self-starting additive-pulse mode-locked diode-pumped Nd∶YAG laser[J]. Optics Letters, 15, 504-506(1990).

    [90] Yan X P, Liu Q, Fu X et al. A 108 W, 500 kHz Q-switching Nd∶YVO4 laser with the MOPA configuration[J]. Optics Express, 16, 3356-3361(2008).

    [91] Fan Y X, He J L, Wang Y G et al. 2-ps passively mode-locked Nd∶YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror[J]. Applied Physics Letters, 86, 101103(2005).

    [92] Ye Z B, Liu C, Tu B et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd∶YLF thin disk laser resonator[J]. Optics Express, 24, 1758-1772(2016).

    [93] Keller U, Chiu T H, Ferguson J F. Self-starting and self-Q-switching dynamics of passively mode-locked Nd∶YLF and Nd∶YAG lasers[J]. Optics Letters, 18, 217-219(1993).

    [94] Li D Z. Study of growth and properties of Yb/Nd doped ultrafast laser crystals[D](2012).

    [95] Zhu H Y, Zhang Y C, Duan Y M et al. Disordered Nd∶CaYAlO4 crystal lasing at 1069, 1080 and 1363 nm[J]. Journal of Luminescence, 195, 225-227(2018).

    [96] Liu S D, Dong L L, Xu Y et al. Femtosecond pulse generation with an a-cut Nd∶CaYAlO4 disordered crystal[J]. Applied Optics, 55, 7659-7662(2016).

    [97] Agnesi A, Dell’Acqua S, Guandalini A et al. Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal[J]. IEEE Journal of Quantum Electronics, 37, 304-313(2001).

    [98] Yu Y G, Wang J Y, Zhang H J et al. Thermal characterization of lowly Nd3+ doped disordered Nd∶CNGG crystal[J]. Optics Express, 17, 9270-9275(2009).

    [99] Mukhopadhyay P K, Ranganathan K, George J et al. 1.6 W of TEM00 cw output at 1.06 μm from Nd∶CNGG laser end-pumped by a fiber-coupled diode laser array[J]. Optics & Laser Technology, 35, 173-180(2003).

    [100] Xie G Q, Qian L J, Yuan P et al. Generation of 534 fs pulses from a passively mode-locked Nd∶CLNGG-CNGG disordered crystal hybrid laser[J]. Laser Physics Letters, 7, 483-486(2010).

    [101] Qin Z P, Qiao Z, Xie G Q et al. Femtosecond and dual-wavelength picosecond operations of Nd, La∶SrF2 disordered crystal laser[J]. IEEE Photonics Journal, 9, 1502007(2017).

    [102] Pang S Y, Ma F K, Yu H et al. Highly efficient continuous-wave laser operation of LD-pumped Nd, Gd∶CaF2 and Nd, Y∶CaF2 crystals[J]. Laser Physics Letters, 15, 055802(2018).

    [103] Pan Z B, Cong H J, Yu H H et al. Growth, thermal properties and laser operation of Nd∶Ca3La2(BO3)4: a new disordered laser crystal[J]. Optics Express, 21, 6091-6100(2013).

    [104] Agnesi A, Carrà L, Reali G. Phosphate Nd∶glass materials for femtosecond pulse generation[J]. Optical Materials, 30, 1828-1831(2008).

    [105] Li X H, Hao Q Q, Jiang D P et al. Smooth and flat photoluminescence spectra of Nd3+ active ions in tri-doped CaF2 single crystals[J]. Optical Materials Express, 10, 704-714(2020).

    [106] Meroni C. New laser amplifier materials at 1053 nm[D](2022).

    [107] Meroni C, Braud A, Doualan J L et al. Spectroscopy and laser gain measurements of CaF2∶Nd, X3+, Z3+ (X, Z=Gd, La, Ce, Y, Lu, Sc) crystals for broadband lasers applications[J]. Journal of Luminescence, 252, 119336(2022).

    [108] Pollack S A, Chang D B. Ion-pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals[J]. Journal of Applied Physics, 64, 2885-2893(1988).

    [109] Pollnan M, Jackson S D. Erbium 3 μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 30-40(2001).

    [110] Zhang Z, Guo X S, Wang J Y et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+∶CaF2 single crystal[J]. Optics Letters, 43, 4300-4303(2018).

    [111] Wang Y X, Liu W X, Zhang Z H et al. Laser-diode-pumped Tm∶SrF2 single crystal for high efficiency CW laser operation at ∼2 µm[J]. Optics Letters, 47, 1117-1120(2022).

    [112] Liu P, Jin L, Liu X et al. High efficiency Tm∶YAG slab laser with hundred-watts-level output power[J]. Applied Optics, 55, 2498-2502(2016).

    [113] Mao Y F, Long Q L, Gao J M et al. 315 W, 1.94 μm, Tm∶YAP Innoslab laser[J]. Laser Physics, 33, 025002(2023).

    [114] Ding Y, Han L, Yao B Q et al. High power Tm∶YLF bulk laser wavelength-stabilized by two F-P etalons[J]. Optik, 126, 990-992(2015).

    [115] Demirbas U, University A B, Thesinga J et al. Continuous-wave Tm∶YLF laser with ultrabroad tuning (1772-2145 nm)[J]. Optics Express, 30, 41219-41239(2022).

    [116] Zharikov E V, Zhekov V I, Kulevskii L A et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ=2.94 μm[J]. Soviet Journal of Quantum Electronics, 4, 1039-1040(1975).

    [117] Zhang Z, Wu Q H, Wang Y X et al. Efficient 2.76 μm continuous-wave laser in extremely lightly Er-doped CaF2 single-crystal fiber[J]. Laser Physics Letters, 17, 085801(2020).

    [118] Zhang Z. Study on local structure, spectral properties and laser performance of Er3+ doped CaF2/SrF2 crystals[D](2021).

    [119] Liu J J, Feng X Y, Fan X W et al. Efficient continuous-wave and passive Q-switched mode-locked Er3+∶CaF2-SrF2 lasers in the mid-infrared region[J]. Optics Letters, 43, 2418-2421(2018).

    [120] Zong M Y, Wang Y F, Zhang Z et al. High-power 2.8 μm lasing in a lightly-doped Er∶CaF2 crystal[J]. Journal of Luminescence, 250, 119089(2022).

    [121] Wang Y F, Ma F K, Zhang Z et al. Revisiting the self-termination effect of erbium based near 3 μm mid-infrared lasers[J]. Journal of Luminescence, 252, 119339(2022).

    [122] Švejkar R, Šulc J, Jelínková H et al. Diode-pumped Er∶SrF2 laser tunable at 2.7 μm[J]. Optical Materials Express, 8, 1025-1030(2018).

    [123] Liu J J, Fan X W, Liu J E et al. Mid-infrared self-Q-switched Er, Pr∶CaF2 diode-pumped laser[J]. Optics Letters, 41, 4660-4663(2016).

    [124] Nie H K, Wang F F, Liu J T et al. Rare-earth ions-doped mid-infrared (2.7‒3 µm) bulk lasers: a review[J]. Chinese Optics Letters, 19, 091407(2021).

    [125] Wyss C, Lüthy W, Weber H P et al. Emission properties of an optimised 2.8 μm Er3+∶YLF laser[J]. Optics Communications, 139, 215-218(1997).

    [126] Ye X L, Xu X F, Ren H J et al. Enhanced high-slope-efficiency and high-power LD side-pumped Er∶YSGG laser[J]. Applied Optics, 58, 9949-9954(2019).

    [127] You L, Lu D Z, Pan Z B et al. High-efficiency 3 μm Er∶YGG crystal lasers[J]. Optics Letters, 43, 5873-5876(2018).

    [128] Fan M Q, Li T, Zhao J et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ∼3 μm[J]. Optics Letters, 43, 1726-1729(2018).

    [129] Liang F, He C, Lu D Z et al. Multiphonon-assisted lasing beyond the fluorescence spectrum[J]. Nature Physics, 18, 1312-1316(2022).

    Liangbi Su, Fengkai Ma, Zhen Zhang, Dapeng Jiang, Zhonghan Zhang, Huamin Kou, Zhen Li, Zhenqiang Chen, Jun Xu. Local Structure Design and Application of Rare-Earth Doped Alkaline Earth Fluorite Laser Crystal (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116002
    Download Citation