• Infrared and Laser Engineering
  • Vol. 44, Issue 9, 2569 (2015)
Wang Qiang1、2, Zhang Yong1, Hao Lili2, Jin Chenfei1, Yang Xu1, Xu Lu1, Yang Chenghua1, and Zhao Yuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    Wang Qiang, Zhang Yong, Hao Lili, Jin Chenfei, Yang Xu, Xu Lu, Yang Chenghua, Zhao Yuan. Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit[J]. Infrared and Laser Engineering, 2015, 44(9): 2569 Copy Citation Text show less
    References

    [1] Boto A N, Kok P, Abrams D S, et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Phys Rev Lett, 2000, 85: 2733-2736.

    [2] Didomenico L D, Lee H W, Kok P, et al. Quantum interferometric sensors[C]//SPIE, 2004, 5359: 169-176.

    [3] Lanzagorta M. Quantum Radar[M/OL]. [2014-10-08]. http: www.morganclaypool.

    [4] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. J Opt Soc Am B, 2010, 27: A63-A72.

    [5] Dowling J P. Quantum optical metrology—the lowdown on high-N00N states[J]. Contemp Phys, 2008, 49: 125-143.

    [6] Jiang K B, Lee H W, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. J App Phys, 2013, 114: 193102.

    [7] Gao Y, Anisimov P M, Wildfeuer C F, et al. Surper-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors[J]. J Opt Soc Am B, 2010, 27: A170-174.

    [8] Gerry C C, Mimih J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511.

    [9] Anisimov P M, Raterman G M, Chiruvelli A, et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602.

    [10] Kim T, Pfister O, Holland M J, et al. Influence of decorrelation on Heisenberg-limited interferometry with quantum correlated photons[J]. Physical Review A, 1998, 57(5): 4004.

    [11] Resch K J, Pregnell K L, Prevedel R, et al. Time-reversal and super-resolving phase measurements[J]. Physical Review Letters, 2007, 98(22): 223601.

    [12] Huver S D, Wildfeuer C F, Dowling J P. Entangled fock states for robust quantum optical metrology, imaging, and sensing[J]. Physical Review A, 2008, 78(6): 063828.

    [13] Gerry C C. Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime[J]. Physical Review A, 2000, 61(4): 043811.

    [14] Bollinger J J, Itano W M, Wineland D J, et al. Optimal frequency measurements with maximally correlated states[J]. Physical Review A, 1996, 54(6): R4649.

    [15] Tan Q S, Liao J Q, Wang X, et al. Enhanced interferometry using squeezed thermal states and even or odd states[J]. Physical Review A, 2014, 89(5): 053822.

    [16] Gerry C C. Non-classical properties of even and odd coherent states[J]. Journal of Modern Optics, 1993, 40(6): 1053-1071.

    [17] Schleich W, Pernigo M, Le Kien F. Nonclassical state from two pseudoclassical states[J]. Physical Review A, 1991, 44(3): 2172.

    [18] Cohen L, Istrati D, Dovrat L, et al. Super-resolved phase measurements at the shot noise limit by parity measurement[J]. Optics Express, 2014, 22(10): 11945-11953.

    [19] Conforti M, Baronio F, Trillo S. Resonant radiation shed by dispersive shock waves[J]. Physical Review A, 2014, 89(1): 013807.

    [20] Ourjoumtsev A, Tualle-Brouri R, Laurat J, et al. Generating optical Schrodinger kittens for quantum information processing[J]. Science, 2006, 312(5770): 83-86.

    [21] Ourjoumtsev A, Jeong H, Tualle-Brouri R, et al. Generation of optical ‘Schrodinger cats’ from photon number states[J]. Nature, 2007, 448(7155): 784-786.

    [22] Takahashi H, Wakui K, Suzuki S, et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction[J]. Physical Review Letters, 2008, 101(23): 233605.

    [23] Gerrits T, Glancy S, Clement T S, et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum[J]. Physical Review A, 2010, 82(3): 031802.

    [24] Xu Zhengping, Shen Honghai, Xu Yongsen. Review of the development of laser active imaging system with direct ranging[J]. Chinese Optics, 2014, 8(1): 28-38. (in Chinese)

    [25] Wang Weibing, Wang Tingfeng, Guo Jin. Orbit determination for space target based on opto-electrical imaging, tracking and ranging on satellite[J]. Optics and Precision Engineering, 2015, 23(2): 528-539. (in Chinese)

    [26] Wang Q, Zhang Y, Xu Y, et al. Pseudorandom modulation quantum secured lidar[J]. Optik-International Journal for Light and Electron Optics, 2015, DOI:10.1016/j.ijleo.2015.07.048 (In Press).

    CLP Journals

    [1] Li Gao, Xiaoli Zhang, Jingting Ma, Wenxiu Yao, Qingwei Wang, Yue Sun, Zunlong Liu, Yajun Wang, Long Tian, Yaohui Zheng. Quantum enhanced Doppler LiDAR based on integrated quantum squeezed light source(Invited)[J]. Infrared and Laser Engineering, 2021, 50(3): 20210031

    [2] Wang Zhiyuan, Zhang Zijing, Zhao Yuan. Single photon quantum state measurement scheme for quantum circuit logic operation[J]. Infrared and Laser Engineering, 2020, 49(2): 205002

    [3] Shi Zhan, Fan Xiang, Cheng Zhengdong, Zhu Bin, Zhang Hongwei. Mean square convergence unbiased estimation of thermal light correlated imaging[J]. Infrared and Laser Engineering, 2016, 45(4): 424003

    Wang Qiang, Zhang Yong, Hao Lili, Jin Chenfei, Yang Xu, Xu Lu, Yang Chenghua, Zhao Yuan. Super-resolving quantum LADAR with odd coherent superposition states sources at shot noise limit[J]. Infrared and Laser Engineering, 2015, 44(9): 2569
    Download Citation