• Infrared and Laser Engineering
  • Vol. 49, Issue 6, 20200079 (2020)
Limei Song1, Haozhen Huang1, Yang Chen1, Xinjun Zhu1, Yangang Yang2, and Qinghua Guo1
Author Affiliations
  • 1天津工业大学 天津市电工电能新技术重点实验室,天津 300387
  • 2天津职业技术师范大学 机械工程学院,天津 300222
  • show less
    DOI: 10.3788/IRLA20200079 Cite this Article
    Limei Song, Haozhen Huang, Yang Chen, Xinjun Zhu, Yangang Yang, Qinghua Guo. Fast measurement of human body posture based on three-dimensional optical information[J]. Infrared and Laser Engineering, 2020, 49(6): 20200079 Copy Citation Text show less
    Target data (a) distribution of the markers (b) angle calculation diagram
    Fig. 1. Target data (a) distribution of the markers (b) angle calculation diagram
    Binocular 3D human body scanning system
    Fig. 2. Binocular 3D human body scanning system
    Calibration balls (a) calibration balls used in system measurement accuracy (b) schematic diagram of the spacing of the calibration balls
    Fig. 3. Calibration balls (a) calibration balls used in system measurement accuracy (b) schematic diagram of the spacing of the calibration balls
    Method comparison (a) traditional TWPSP body scanning schematic (b) improved TWPSP body scanning schematic (c) fitting result of traditional method (d) result of the method in this paper (e) traditional TWPSP method reconstruction chart (f) improved TWPSP method reconstruction chart
    Fig. 4. Method comparison (a) traditional TWPSP body scanning schematic (b) improved TWPSP body scanning schematic (c) fitting result of traditional method (d) result of the method in this paper (e) traditional TWPSP method reconstruction chart (f) improved TWPSP method reconstruction chart
    Comparison of the average values of the three groups of poses
    Fig. 5. Comparison of the average values of the three groups of poses
    Key dimensionsTraditional TWPSP methodMethod in this paper
    /mm 149.85349.970
    250.05350.038
    349.97950.000
    449.95650.009
    550.01450.024
    Average49.97149.998
    RMSE0.0440.019
    /mm 125.09625.072
    224.97525.019
    325.04824.963
    424.98125.051
    52525.07724.949
    Average25.06125.028
    RMSE0.0530.037
    /mm 155.65455.924
    255.64355.934
    355.57255.910
    455.63255.881
    555.61055.875
    Average55.94055.895
    RMSE0.0550.035
    Table 1. First five measurements of calibration balls
    \begin{document}${\hat d_1}$\end{document} /mm \begin{document}${\hat d_{\rm{2}}}$\end{document} /mm \begin{document}${\hat d_{\rm{3}}}$\end{document} /mm \begin{document}$MA{E_{\rm{1}}}$\end{document} /mm \begin{document}$MA{E_{\rm{2}}}$\end{document} /mm \begin{document}$MA{E_{\rm{3}}}$\end{document} /mm
    Traditional TWPSP method19.94919.96119.9780.0480.0350.039
    Method in this paper19.97919.97819.9880.0280.0180.019
    Table 2. Data comparison table of fitting results
    EquipmentPoint cloud numberPoint cloud densityAccuracy/mmReconstruction time/s
    Artec scanner795 7850.1430.17
    Sense scanner121 7170.0010.95
    Traditional TWPSP method system236 5400.0160.0552
    Scanning system of this paper296 5400.0160.031
    Table 3. Point cloud data analysis of different sensors
    Average degree of No.1 car Average degree of No.2 car Average degree of No.3 car RMSE of No.1 car RMSE of No.2 car RMSE of No.3 car
    Angle A1 25.10226.41023.6051.2911.4541.249
    Angle A2 98.491104.70 598.3705.2305.7755.081
    Angle A3 60.80664.31365.6543.4263.8043.117
    Angle A4 101.50193.416101.3285.9665.3205.313
    Angle A5 35.54330.67735.3853.9263.1653.381
    Angle A6 127.434133.667138.0952.1172.0842.879
    Angle A7 154.080141.380144.4008.3448.6618.250
    Angle A8 41.64732.87543.1926.7756.6256.291
    Angle A9 13.9359.66114.3993.8643.2973.958
    Table 4. Angles of key points (all values are reported as degree)
    Limei Song, Haozhen Huang, Yang Chen, Xinjun Zhu, Yangang Yang, Qinghua Guo. Fast measurement of human body posture based on three-dimensional optical information[J]. Infrared and Laser Engineering, 2020, 49(6): 20200079
    Download Citation