• Infrared and Laser Engineering
  • Vol. 49, Issue 6, 20200079 (2020)
Limei Song1, Haozhen Huang1, Yang Chen1, Xinjun Zhu1, Yangang Yang2, and Qinghua Guo1
Author Affiliations
  • 1天津工业大学 天津市电工电能新技术重点实验室,天津 300387
  • 2天津职业技术师范大学 机械工程学院,天津 300222
  • show less
    DOI: 10.3788/IRLA20200079 Cite this Article
    Limei Song, Haozhen Huang, Yang Chen, Xinjun Zhu, Yangang Yang, Qinghua Guo. Fast measurement of human body posture based on three-dimensional optical information[J]. Infrared and Laser Engineering, 2020, 49(6): 20200079 Copy Citation Text show less

    Abstract

    The three-dimensional measurement of human body posture is of great significance to the comfort evaluation of car seat design. In order to acquire the 3D data of the human body in the car quickly and accurately, a method of 3D data acquisition based on binocular vision was adopted, which combined the structured light with the marked points, and realized the rapid reconstruction of 3D point cloud of the human body and the automatic and rapid measurement of 3D attitude (distance and angle). The experimental results show that when the distance is more than 2 m and the measuring range is 1.5 m × 2 m, the measurement accuracy of human body posture can reach 0.03 mm, which meets the demand of high-precision three-dimensional data acquisition of automobile human body posture. Compared with traditional three-dimensional measurement method, the three-dimensional automatic measurement method used in this paper not only has a high degree of automation, but also has the advantages of high accuracy, fast speed and strong robustness.
    $\begin{split} & {I_k}({{x}},y) = A({{x}},y) + B(x,y)\cos \left( {{\phi _i}(x,y) + \frac{{{\text{π}} \times k}}{3}} \right), \\ & k = 0,1...5 \end{split} $(1)

    View in Article

    $\begin{split} & {\phi _i}(x,y) = \arctan \left( {\frac{{{I_5}(x,y) - {I_3}(x,y)}}{{({I_1}(x,y) + {I_4}(x,y)) - ({I_3}(x,y) + {I_5}(x,y))}}} \right),\\ &i = 1,2,3\\[-10pt]\end{split}$(2)

    View in Article

    ${\lambda _{12}} = \left| {\frac{{{\lambda _1} \times {\lambda _2}}}{{{\lambda _1} - {\lambda _2}}}} \right|,\;{\lambda _{23}} = \left| {\frac{{{\lambda _2} \times {\lambda _3}}}{{{\lambda _2} - {\lambda _3}}}} \right|,\;{\lambda _{123}} = \left| {\frac{{{\lambda _{12}} \times {\lambda _{23}}}}{{{\lambda _{12}} - {\lambda _{23}}}}} \right|$(3)

    View in Article

    $\begin{split}{\varPhi _3}(x,y) =\; & {\phi _3}(x,y) + 2{\text{π}} \Bigg({\rm{INT}}\left( {\frac{{{\phi _{123}}(x,y)}}{{2{\text{π}} }} \times \frac{{{\lambda _{123}}}}{{{\lambda _{23}}}}} \right) \times \Bigg.\\ & \Bigg.\frac{{{\lambda _{23}}}}{{{\lambda _3}}}{ + {\rm{INT}}\left( {\frac{{{\phi _{23}}(x,y)}}{{2{\text{π}} }} \times \frac{{{\lambda _{23}}}}{{{\lambda _3}}}} \right)} \Bigg)\end{split}$(4)

    View in Article

    ${\theta _G}(x,y) = {\theta _w}(x,y) + 2{\text{π}} *m(x,y)$(5)

    View in Article

    ${\varPhi '_3}(x,y) = \left\{ \begin{aligned} & {{\phi '}_3}(x,y) + 2{\text{π}} \left( {{\rm{INT}}\left( {\frac{{{{\phi '}_1}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_1}}}{{{{\lambda '}_2}}}} \right) \times \frac{{{{\lambda '}_2}}}{{{{\lambda '}_3}}}\left. { + {\rm{INT}}\left( {\frac{{{{\phi '}_2}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_2}}}{{{{\lambda '}_3}}}} \right)} \right)} \right. \\ & {{\phi '}_1}(x,y) \ne 2{{\text{π}} _{}}\;and\;{{\phi '}_2}(x,y) \ne 2{{\text{π}} _{}}\;and\;{{\phi '}_3}(x,y) \ne 2{\text{π}} \\ & {{\phi '}_3}(x,y) + 2{\text{π}} \left( {{\rm{INT}}\left( {\frac{{{{\phi '}_1}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_1}}}{{{{\lambda '}_2}}}} \right) \times \frac{{{{\lambda '}_2}}}{{{{\lambda '}_3}}}\left. { + {\rm{INT}}\left( {\frac{{{{\phi '}_2}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_2}}}{{{\lambda _3}}}} \right){\rm{ - }}1} \right)} \right. \\ & {{\phi '}_1}(x,y) \ne 2{{\text{π}} _{}}\;and\;\left( {{{\phi '}_2}(x,y) = 2{{\text{π}} _{}}\left. \;or\;{{{\phi '}_3}(x,y) = 2{\text{π}} } \right)} \right. \\ & {{\phi '}_3}(x,y) + 2{\text{π}} \left( {{\rm{INT}}\left( {\frac{{{{\phi '}_1}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_1}}}{{{{\lambda '}_2}}} - 1} \right) \times \frac{{{{\lambda '}_2}}}{{{{\lambda '}_3}}}\left. { + {\rm{INT}}\left( {\frac{{{{\phi '}_2}(x,y)}}{{2{\text{π}} }} \times \frac{{{{\lambda '}_2}}}{{{{\lambda '}_3}}}} \right)} \right)} \right. \\ & {{\phi '}_1}(x,y) = 2{{\text{π}} _{}}\;and\;{{\phi '}_2}(x,y) \ne 2{{\text{π}} _{}}\;and\;{{\phi '}_3}(x,y) \ne 2{\text{π}} \end{aligned} \right.$(6)

    View in Article

    ${{D}}= \left(\sum\limits_{i = 1}^k {\sqrt {{{(x - {x_i})}^2} + {{(y - {y_i})}^2} + {{(z - {z_i})}^2}} } \right)\frac{1}{k}$(7)

    View in Article

    $\theta = a\cos \left(\frac{{{v_1}{u_1} + {v_2}{u_2} + {v_3}{u_3}}}{{\sqrt {{v_1}{v_1} + {v_2}{v_2} + {v_3}{v_3}} + \sqrt {{u_1}{u_1} + {u_2}{u_2} + {u_3}{u_3}} }}\right)$(8)

    View in Article

    $ \left( \begin{aligned} {r_1} \\ {r_2} \\ {r_3} \\ \end{aligned} \right) = \left( \begin{aligned} {v_2}{u_3} - {v_3}{u_2} \\ {v_3}{u_1} - {v_1}{u_3} \\ {v_1}{u_2} - {v_2}{u_1} \\ \end{aligned} \right) $ (9)

    View in Article

    $R = \left[ \begin{array}{ccccc} {r_1^2 + (1 - r_1^2)\cos \theta }&{{r_1}{r_2}(1 - \cos \theta ) + {r_3}\sin \theta }&{{r_1}{r_3}(1 - \cos \theta ) + {r_2}\sin \theta } \\ {{r_1}{r_2}(1 - \cos \theta ) - {r_3}\sin \theta }&{r_2^2 + (1 - r_2^2)\cos \theta }&{{r_2}{r_3}(1 - \cos \theta ) - {r_1}\sin \theta } \\ {{r_1}{r_3}(1 - \cos \theta ) - {r_2}\sin \theta }&{{r_2}{r_3}(1 - \cos \theta ) + {r_1}\sin \theta }&{r_3^2 + (1 - r_3^2)\cos \theta } \end{array} \right]$(10)

    View in Article

    $\left( \begin{aligned} {c_x} \\ {c_y} \\ {c_z} \end{aligned} \right) = \left( \begin{aligned} (\sum\limits_{i = 1}^n {{x_i})/n} \\ (\sum\limits_{i = 1}^n {{y_i})/n} \\ (\sum\limits_{i = 1}^n {{z_i})/n} \end{aligned} \right)$(11)

    View in Article

    $\left[ \begin{aligned} {T_{\rm{x}}} \\ {T_{\rm{y}}} \\ {T_{\rm{z}}} \end{aligned} \right] = \left[ \begin{aligned} - {c_x} \\ - {c_y} \\ - {c_z} \end{aligned} \right]$(12)

    View in Article

    $\left[ {\begin{aligned} {P'} \\ 1 \end{aligned}} \right] = \left[ {\begin{array}{*{20}{c}} {{R_{}}}&T \\ {{0^T}}&1 \end{array}} \right]\left[ {\begin{aligned} P \\ 1 \end{aligned}} \right]$(13)

    View in Article

    $d(A,B) = \sqrt {{{({x_A} - {x_B})}^2} + {{({y_A} - {y_B})}^2} + {{({z_A} - {z_B})}^2}} $(14)

    View in Article

    $\begin{split} & \overline {AB} = ({B_x} - {A_x},{B_y} - {A_y},{B_z} - {A_z}) \\ & \overline {AC} = ({C_x} - {A_x},{C_y} - {A_y},{C_z} - {A_z}) \end{split} $(15)

    View in Article

    $\cos {\theta_s} = \frac{{AB\cdot AC}}{{|AB||AC|}}$(16)

    View in Article

    Limei Song, Haozhen Huang, Yang Chen, Xinjun Zhu, Yangang Yang, Qinghua Guo. Fast measurement of human body posture based on three-dimensional optical information[J]. Infrared and Laser Engineering, 2020, 49(6): 20200079
    Download Citation