• Acta Optica Sinica
  • Vol. 37, Issue 3, 318008 (2017)
Peng Dingming1、2、*, Fu Zhifei1、2, and Xu Pingyong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201737.0318008 Cite this Article Set citation alerts
    Peng Dingming, Fu Zhifei, Xu Pingyong. Fluorescent Proteins and Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318008 Copy Citation Text show less
    References

    [1] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

    [2] Xu K, Zhong G S, Zhuang X W. Actin, spectrin and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.

    [3] Lippincott-Schwartz J, Patterson G H. Development and use of fluorescent protein markers in living cells[J]. Science, 2013, 300(5616): 87-91.

    [4] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446.

    [5] Ando R, Mizuno H, Miyawaki A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting[J]. Science, 2004, 306(5700): 1370-1373.

    [6] Patterson G H, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297(5588): 1873-1877.

    [7] Ando R, Hama H, Yamamoto-Hino M, et al. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein[J]. Proceedings of the National Academy of Sciences, 2002, 99(20): 12651-12656.

    [8] Orm M, Cubitt A B, Kallio K, et al. Crystal structure of the aequorea victoria green fluorescent protein[J]. Science, 1996, 273(5280): 1392-1395.

    [9] Stiel A C, Trowitzsch S, Weber G, et al. 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants[J]. Biochemical Journal, 2007, 402(1): 35-42.

    [10] Subach F V, Malashkevich V N, Zencheck W D, et al. Photoactivation mechanism of PAmCherry based on crystal structures of the protein in the dark and fluorescent states[J]. Proceedings of the National Academy of Sciences, 2009, 106(50): 21097-21102.

    [11] Hayashi I, Mizuno H, Tong K I, et al. Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede[J]. Journal of Molecular Biology, 2007, 372(4): 918-926.

    [12] Habuchi S, Dedecker P, Hotta J, et al. Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching[J]. Photochemical & Photobiological Sciences, 2006, 5(6): 567-576.

    [13] Hofmann M, Eggeling C, Jakobs S, et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of the National Academy of Sciences, 2005, 102(49): 17565-17569.

    [14] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

    [15] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences, 2005, 102(37): 13081-13086.

    [16] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

    [17] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795.

    [18] Dertinger T, Colyer R, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22287-22292.

    [19] Cox S, Rosten E, Monypenny J, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics[J]. Nature Methods, 2012, 9(2): 195-200.

    [20] Chen F, Tillberg P W, Boyden E S. Expansion microscopy[J]. Science, 2015, 347(6221): 543-548.

    [21] Shtengel G, Galbraith J A, Galbraith C G, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure[J]. Proceedings of the National Academy of Sciences, 2009, 106(9): 3125-3130.

    [22] Bewersdorf J, Schmidt R, Hell S W. Comparison of I5M and 4Pi-microscopy[J]. Journal of Microscopy, 2006, 222(Pt 2): 105-117.

    [23] Balzarotti F, Eilers Y, Gwosch K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[J]. Science, 2016, 355(6325): 606-612.

    [24] Betzig E, Trautman J K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067): 189-195.

    [25] Hell S W, Sahl S J, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D:Applied Physics, 2015, 48(44): 443001.

    [26] Zhang M S, Chang H, Zhang Y D, et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins[J]. Nature Methods, 2012, 9(7): 727-729.

    [27] Chen Y C, Dickson R M. Improved fluorescent protein contrast and discrimination by optically controlling dark state lifetimes[J]. Journal of Physical Chemistry Letters, 2017, 8(4): 733-736.

    [28] Wang S Y, Moffitt J R, Dempsey G T, et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[J]. Proceedings of the National Academy of Sciences, 2014, 111(23): 8452-8457.

    [29] Zhang X, Zhang M S, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J]. Proceedings of the National Academy of Sciences, 2016, 113(37): 10364-10369.

    [30] Zhang X, Chen X Z, Zeng Z P, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI)[J]. Acs Nano, 2015, 9(3): 2659-2667.

    [31] Nagai T, Ibata K, Park E S, et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications[J]. Nature Biotechnology, 2002, 20(1): 87-90.

    [32] Terskikh A, Fradkov A, Ermakova G, et al. "Fluorescent timer": protein that changes color with time[J]. Science, 2000, 290(5496): 1585-1588.

    [33] Lu-Walther H W, Hou W, Kielhorn M, et al. Nonlinear structured illumination using a fluorescent protein activating at the readout wavelength[J]. PloS One, 2016, 11(10): e0165148.

    [34] Zhanghao K, Chen L, Yang X S, et al. Super-resolution dipole orientation mapping via polarization demodulation[J]. Light Science & Applications, 2016, 5(10): e16166.

    Peng Dingming, Fu Zhifei, Xu Pingyong. Fluorescent Proteins and Super-Resolution Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 318008
    Download Citation