• Advanced Photonics Nexus
  • Vol. 1, Issue 2, 026004 (2022)
Yu Lu1、2、†, Lin Kai1、2, Caiyi Chen1、2, Qing Yang3, Yizhao Meng1、2, Yi Liu1、2, Yang Cheng3, Xun Hou1、2, and Feng Chen1、2、*
Author Affiliations
  • 1Xi’an Jiaotong University, State Key Laboratory for Manufacturing System Engineering, Xi’an, China
  • 2Xi’an Jiaotong University, School of Electronic Science and Engineering, Shaanxi Key Laboratory of Photonics Technology for Information, Xi’an, China
  • 3Xi’an Jiaotong University, School of Mechanical Engineering, Xi’an, China
  • show less
    DOI: 10.1117/1.APN.1.2.026004 Cite this Article Set citation alerts
    Yu Lu, Lin Kai, Caiyi Chen, Qing Yang, Yizhao Meng, Yi Liu, Yang Cheng, Xun Hou, Feng Chen. Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection[J]. Advanced Photonics Nexus, 2022, 1(2): 026004 Copy Citation Text show less
    References

    [1] G. Laucirica et al. Biomimetic solid-state nanochannels for chemical and biological sensing applications. TrAC Trends Anal. Chem., 144, 116425(2021).

    [2] L. Bocquet. Nanofluidics coming of age. Nat. Mater., 19, 254-256(2020).

    [3] Y. Xu. Nanofluidics: a new arena for materials science. Adv. Mater., 30, 1702419(2018).

    [4] M. Ali et al. Size-based cationic molecular sieving through solid-state nanochannels. Adv. Mater. Interfaces, 8, 2001766(2021).

    [5] L. Ding et al. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun., 9, 155(2018).

    [6] L. Chen et al. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun., 12, 4650(2021).

    [7] S. Zhang et al. Highly rectifying fluidic diodes based on asymmetric layer-by-layer nanofilms on nanochannel membranes. Anal. Chem., 93, 4291-4298(2021).

    [8] M. Nazari et al. Transport phenomena in nano/molecular confinements. ACS Nano, 14, 16348-16391(2020).

    [9] P. Afonicheva et al. Creation of micro-and nanochannels on the surface of silicon chips by lithography methods and investigation of ion transport in channel. J. Phys. Conf. Ser., 2103, 012112(2021).

    [10] S. Kim et al. Fabrication of a novel nanofluidic device featuring ZnO nanochannels. ACS Omega, 5, 3144-3150(2020).

    [11] O. Vanderpoorten et al. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Microsystems Nanoeng., 5, 40(2019).

    [12] S. Amin et al. A nanofluidic knot factory based on compression of single DNA in nanochannels. Nat. Commun., 9, 1506(2018).

    [13] C. Wang et al. Photoresponsive DNA materials and their applications. Chem. Soc. Rev., 51, 720-760(2022).

    [14] D. Wu et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci. Appl., 4, e228(2015).

    [15] D. Wu et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Adv. Opt. Mater., 2, 751-758(2014).

    [16] J. Yong et al. Nature-inspired superwettability achieved by femtosecond lasers. Ultrafast Sci., 2022, 9895418(2022).

    [17] D. Tan et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv. Photonics, 3, 024002(2021).

    [18] M. Malinauskas et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [19] R. Stoian, J. P. Colombier. Advances in ultrafast laser structuring of materials at the nanoscale. Nanophotonics, 9, 4665-4688(2020).

    [20] K. Sugioka, Y. Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl., 3, e149(2014).

    [21] A. Y. Vorobyev, C. Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev., 7, 385-407(2013).

    [22] A. P. Joglekar et al. Optics at critical intensity: applications to nanomorphing. Proc. Natl. Acad. Sci. U. S. A., 101, 5856-5861(2004).

    [23] Y. Liao et al. Femtosecond laser nanostructuring in porous glass with sub-50 nm feature sizes. Opt. Lett., 38, 187(2013).

    [24] F. Chen et al. Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Opt. Lett., 39, 606(2014).

    [25] S. He et al. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica. Opt. Lett., 37, 3825(2012).

    [26] L. Xu et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Adv. Photonics, 2, 026003(2020).

    [27] Z. Z. Li et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci. Appl., 9, 41(2020).

    [28] M. Lamperti et al. Invited article: filamentary deposition of laser energy in glasses with Bessel beams. APL Photonics, 3, 120805(2018).

    [29] M. K. Bhuyan et al. 3D nano-fabrication using controlled bessel-glass interaction in ultra-fast modes. J. Laser Micro Nanoeng., 12, 274-280(2017).

    [30] V. Garzillo et al. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass. J. Appl. Phys., 120, 013102(2016).

    [31] M. K. Bhuyan et al. Ultrafast laser nanostructuring in bulk silica, a ‘slow’ microexplosion. Optica, 4, 951(2017).

    [32] S. Juodkazis et al. Laser-induced microexplosion confined in the bulk of a sapphire cystal: evidence of multimegabar pressures. Phys. Rev. Lett., 96, 1-4(2006).

    [33] Y. Lu et al. Laser fabrication of nanoholes on silica through surface window assisted nano-drilling (SWAN). Nanomaterials, 11, 3340(2021).

    [34] P. Polesana et al. Filamentation in Kerr media from pulsed Bessel beams. Phys. Rev. A: At., Mol., Opt. Phys., 77, 043814(2008).

    [35] M. K. Bhuyan et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl. Phys. Lett., 104, 021107(2014).

    [36] A. Mermillod-Blondin et al. Dynamics of femtosecond laser induced voidlike structures in fused silica. Appl. Phys. Lett., 94, 041911(2009).

    [37] P. K. Velpula et al. Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring. Laser Photonics Rev., 10, 230-244(2016).

    [38] Q. Fan et al. Uniform long focal depth with centimeter-scale range produced by an aspherical mirror. Opt. Commun., 453, 124342(2019).

    [39] L. Hanget?al.. Needles of light produced with a quasi-parabolic mirror. J. Opt. Soc. Am. A, 35, 174(2018).

    [40] D. Panneton et al. Needles of light produced with a spherical mirror. Opt. Lett., 40, 419(2015).

    [41] I. M. Burakov et al. Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses. J. Appl. Phys., 101, 043506(2007).

    [42] L. Sudrie et al. Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett., 89, 186601(2002).

    [43] L. Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20, 1307-1314(1965).

    Yu Lu, Lin Kai, Caiyi Chen, Qing Yang, Yizhao Meng, Yi Liu, Yang Cheng, Xun Hou, Feng Chen. Nanochannels with a 18-nm feature size and ultrahigh aspect ratio on silica through surface assisting material ejection[J]. Advanced Photonics Nexus, 2022, 1(2): 026004
    Download Citation