• Acta Optica Sinica
  • Vol. 41, Issue 20, 2031002 (2021)
Wenyuan Zhao1、2, Mengyao Zhang1、2, Ran Bi1、2, Chuantao Zheng1、2、*, and Yiding Wang1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • 2Jilin Provincial Engineering Research Center of Infrared Gas Sensing Technique, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/AOS202141.2031002 Cite this Article Set citation alerts
    Wenyuan Zhao, Mengyao Zhang, Ran Bi, Chuantao Zheng, Yiding Wang. Infrared Hf-doped ZnO Transparent Conductive Film[J]. Acta Optica Sinica, 2021, 41(20): 2031002 Copy Citation Text show less
    References

    [1] Zhao X Y, Shen H P, Zhang Y et al. Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells[J]. ACS Applied Materials & Interfaces, 8, 7826-7833(2016).

    [2] Zeumault A, Subramanian V. Mobility enhancement in solution-processed transparent conductive oxide TFTs due to electron donation from traps in high-k gate dielectrics[J]. Advanced Functional Materials, 26, 955-963(2016).

    [3] Ye Y T, Ma H, Sun C L et al. Research progress on flexible photonic materials and devices[J]. Laser & Optoelectronics Progress, 57, 030001(2020).

    [4] Taha H, Jiang Z T, Henry D J et al. Improving the optoelectronic properties of titanium-doped indium tin oxide thin films[J]. Semiconductor Science and Technology, 32, 065011(2017).

    [5] Lu Z D, Meng F Y, Cui Y F et al. High quality of IWO films prepared at room temperature by reactive plasma deposition for photovoltaic devices[J]. Journal of Physics D, 46, 075103(2013).

    [6] Tian F, Bi R, Zhao W Y et al. Infrared indium oxide Hf-doped transparent conductive films[J]. Acta Photonica Sinica, 49, 0931001(2020).

    [7] Han F B, Zhao W Y, Bi R et al. Influence mechanism of Cu layer thickness on photoelectric properties of IWO/Cu/IWO films[J]. Materials, 13, 113(2019).

    [8] Guo K, Yu T, Song B B et al. Fabrication and opto-electronic properties of ZnO/Ag/ZnO composite films at room temperature[J]. Laser & Optoelectronics Progress, 54, 103102(2017).

    [9] Guo D S, Chen Z N, Wang D K et al. Effects of annealing temperature on crystal quality and photoelectric properties of Al-doped ZnO thin film[J]. Chinese Journal of Lasers, 46, 0403002(2019).

    [10] Mo G K, Liu J H, Zou Z L et al. Preparation of low-resistivity GZO thin films using pulsed laser deposition and investigation of optoelectronic properties[J]. Chinese Journal of Lasers, 46, 1003001(2019).

    [11] Guo S, Yang L, Dai B et al. The research progress about the effect of carrier concentration and mobility on the infrared transparent properties and conductive properties of oxide thin films[J]. Scientia Sinica Technologica, 48, 583-595(2018).

    [12] Wang Y F, Song J M, Zhang J et al. Effect of substrate temperature on F and Al co-doped ZnO films deposited by radio frequency magnetron sputtering[J]. Solar Energy, 194, 471-477(2019).

    [13] Wang Y F, Song J M, Guo Y J et al. Optimization of physical properties of transparent conductive F and Ga Co-doped ZnO films for optoelectronic applications[J]. Materials Letters, 269, 127591(2020).

    [14] Wang Y F, Zhang X D, Meng X D et al. Simulation, fabrication, and application of transparent conductive Mo-doped ZnO film in a solar cell[J]. Solar Energy Materials and Solar Cells, 145, 171-179(2016).

    [15] Qi Y B, Singh S, Lau C et al. Stabilization of competing ferroelectric phases of HfO2 under epitaxial strain[J]. Physical Review Letters, 125, 257603(2020).

    [16] Guo S, Yang L, Zhang X P et al. Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen[J]. Ceramics International, 45, 21590-21595(2019).

    [17] Liu E K, Zhu B S, Luo J S[M]. The physics of semiconductors, 281-285(2008).

    [18] Yu H Z[M]. Infrared optical material, 65-68(2015).

    [19] Cheng L, Zhu S, Zheng W et al. Ultra-wide spectral range (0.4--8 μm) transparent conductive ZnO bulk single crystals: a leading runner for mid-infrared optoelectronics[J]. Materials Today Physics, 14, 100244(2020).

    [20] Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC[J]. IEEE Transactions on Electron Devices, 48, 1442-1447(2001).

    Wenyuan Zhao, Mengyao Zhang, Ran Bi, Chuantao Zheng, Yiding Wang. Infrared Hf-doped ZnO Transparent Conductive Film[J]. Acta Optica Sinica, 2021, 41(20): 2031002
    Download Citation