• Journal of Semiconductors
  • Vol. 43, Issue 2, 022802 (2022)
L. Castañeda
Author Affiliations
  • Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, A. P. 11340, México
  • show less
    DOI: 10.1088/1674-4926/43/2/022802 Cite this Article
    L. Castañeda. Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. Journal of Semiconductors, 2022, 43(2): 022802 Copy Citation Text show less
    References

    [1] L Castañeda. Present status of the development and application of transparent conductors oxide thin solid films. Mater Sci Appl, 2, 1233(2011).

    [2] . Study of porous nanoflake ZnO for dye-sensitized solar cell application. Am J Eng Appl Sci, 2, 236(2009).

    [3] L Castañeda, M Avendaño-Alejo. Physical characterization of nickel-doped zinc oxide thin solid films deposited by the ultrasonic chemically sprayed technique: Gas-sensing performance in a propane atmosphere. J Nanoelectron Optoelectron, 9, 419(2014).

    [4] L Castañeda, A Maldonado, J Rodríguez-Baez et al. Chemical spray pyrolysis deposited fluorine-doped zinc oxide thin films: Effect of acetic acid content in the starting solution on the physical properties. Mater Sci Semicond Process, 15, 232(2012).

    [5] L Castañeda, O G Morales-Saavedra, D R Acosta et al. Structural, morphological, optical, and nonlinear optical properties of fluorine-doped zinc oxide thin films deposited on glass substrates by the chemical spray technique. Phys Status Solidi A, 203, 1971(2006).

    [6] M Suchea, S Christoulakis, K Moschovis et al. ZnO transparent thin films for gas sensor applications. Thin Solid Films, 515, 551(2006).

    [7] L Castañeda. Evaluating propane sensing properties of ultrasonic spray deposited zinc oxide thin solid films. J Nanoelectron Optoelectron, 13, 819(2018).

    [8] S Hussain, T M Liu, N Aslam et al. Polymer-assisted co-axial multi-layered circular ZnO nanodisks. Mater Lett, 152, 260(2015).

    [9] S Hussain, T M Liu, M Kashif et al. A simple preparation of ZnO nanocones and exposure to formaldehyde. Mater Lett, 128, 35(2014).

    [10] L Castañeda. The effects of warmness plasma, and high frequency electrical field on beam-1 plasma interaction in plasma waveguide. J Comput Theor Nanosci, 15, 1830(2018).

    [11] M Girtan, G G Rusu, S Dabos-Seignon et al. Structural and electrical properties of zinc oxides thin films prepared by thermal oxidation. Appl Surf Sci, 254, 4179(2008).

    [12] J S Lee, M S Islam, S Kim. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens Actuators B, 126, 73(2007).

    [13] L Castañeda, M Avendaño-Alejo, H Gómez et al. Physical characterization of ruthenium-doped zinc oxide thin solid films deposited by the sol–gel technique: Gas-sensing performance in a propane atmosphere. Sen Lett, 11, 286(2013).

    [14] L Castañeda. Synthesis and characterization of ZnO micro- and nano-cages. Acta Mater, 57, 1385(2009).

    [15] C H Ku, J J Wu. Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology, 18, 505706(2007).

    [16] L Castañeda. Photoluminescence and morphological characterization of silver-doped zinc oxide novel nanostructures obtained by ultrasonic spray pyrolysis. J Nanoelectron Optoelectron, 8, 373(2013).

    [17]

    [18] L Castañeda, C Torres-Torres, M Trejo-Valdez et al. Optical and photoconductive properties exhibited by silver doped zinc oxide thin films. J Nanoelectron Optoelectron, 8, 267(2013).

    [19]

    [20] S Park. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles. Mater Lett, 234, 315(2019).

    [21] A Aziz, N Tiwale, S A Hodge et al. Core-shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing. ACS Appl Mater Interfaces, 10, 43817(2018).

    [22] M Jeem, L H Zhang, J Ishioka et al. Tuning optoelectrical properties of ZnO nanorods with excitonic defects via submerged illumination. Nano Lett, 17, 2088(2017).

    [23] R Zhu, W G Zhang, C Li et al. Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett, 13, 5171(2013).

    [24] T Y Zhai, L Li, Y Ma et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 40, 2986(2011).

    [25] J N Ding, Y R Zhou, G Q Dong et al. Solution-processed ZnO as the efficient passivation and electron selective layer of silicon solar cells. Prog Photovolt: Res Appl, 26, 974(2018).

    [26] P L Chen, X Y Ma, D R Yang. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J Appl Phys, 101, 053103(2007).

    L. Castañeda. Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. Journal of Semiconductors, 2022, 43(2): 022802
    Download Citation