• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2323001 (2021)
Nanning Yi, Rong Zong, Rongrong Qian*, and Tao Duan
Author Affiliations
  • School of Information, Yunnan University, Kunming , Yunnan 650000, China
  • show less
    DOI: 10.3788/LOP202158.2323001 Cite this Article Set citation alerts
    Nanning Yi, Rong Zong, Rongrong Qian, Tao Duan. Graphene-Based Dual-Function Switchable Broadband Terahertz Polarization Converter[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2323001 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Siegel P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [3] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [4] Fan R H, Zhou Y, Ren X P et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 27, 1201-1206(2015).

    [5] Hunsche S, Koch M, Brener I et al. THz near-field imaging[J]. Optics Communications, 150, 22-26(1998).

    [6] Fan R H, Liu D, Peng R W et al. Broadband integrated polarization rotator using three-layer metallic grating structures[J]. Optics Express, 26, 516-524(2018).

    [7] Lu T G, Qiu P Z, Lian J Q et al. Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials[J]. Optical Materials, 95, 109230(2019).

    [8] Zeng F, Ye L F, Li L et al. Tunable mid-infrared dual-band and broadband cross-polarization converters based on U-shaped graphene metamaterials[J]. Optics Express, 27, 33826-33839(2019).

    [9] Zhu J F, Li S F, Deng L et al. Broadband tunable terahertz polarization converter based on a sinusoidally-slotted graphene metamaterial[J]. Optical Materials Express, 8, 1164-1173(2018).

    [10] Li Z Y, Yu N F. Modulation of mid-infrared light using graphene-metal plasmonic antennas[J]. Applied Physics Letters, 102, 131108(2013).

    [11] Yao Y, Shankar R, Kats M A et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 14, 6526-6532(2014).

    [12] Yang C, Luo Y, Guo J X et al. Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene[J]. Optics Express, 24, 16913-16922(2016).

    [13] Zhang J R, Zhang K, Cao A L et al. Bi-functional switchable broadband terahertz polarization converter based on a hybrid graphene-metal metasurface[J]. Optics Express, 28, 26102-26110(2020).

    [14] Luo S W, Li B, Yu A L et al. Broadband tunable terahertz polarization converter based on graphene metamaterial[J]. Optics Communications, 413, 184-189(2018).

    [15] Liu W W, Chen S Q, Li Z C et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 40, 3185-3188(2015).

    [16] Huang X, He W, Yang F et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J]. Optics Express, 26, 25558-25566(2018).

    [17] Hu N, Wu F L, Bian L A et al. Dual broadband absorber based on graphene metamaterial in the terahertz range[J]. Optical Materials Express, 8, 3899-3909(2018).

    [18] Sun P. Characteristic analysis and application of graphene surface plasmons[D], 2-4(2018).

    [19] Qi X Q, Zou J L, Li C et al. Graphene-based electrically controlled terahertz polarization switching between a quarter-wave plate and half-wave plate[J]. Optics Express, 28, 39430(2020).

    [20] Gómez-Díaz J S, Perruisseau-Carrier J. Graphene-based plasmonic switches at near infrared frequencies[J]. Optics Express, 21, 15490-15504(2013).

    [22] Xu K D, Li J X, Zhang A X et al. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips[J]. Optics Express, 28, 11482-11492(2020).

    [23] Zhao Y T, Wu B, Huang B J et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface[J]. Optics Express, 25, 7161-7169(2017).

    [24] Walia S, Shah C M, Gutruf P et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales[J]. Applied Physics Reviews, 2, 011303(2015).

    [25] Jiang Y N, Wang L, Wang J et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 25, 27616-27623(2017).

    [26] Yan D X, Meng M, Li J S et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 28, 29843-29854(2020).

    [27] Song Z Y, Zhang J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 28, 12487-12497(2020).

    [28] Zeng L, Huang T, Liu G B et al. A tunable ultra-broadband linear-to-circular polarization converter containing the graphene[J]. Optics Communications, 436, 7-13(2019).

    [29] Ako R T, Lee W S L, Bhaskaran M et al. Broadband and wide-angle reflective linear polarization converter for terahertz waves[J]. APL Photonics, 4, 096104(2019).

    [30] Luo J, Shi X Z, Luo X Q et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 28, 30861-30870(2020).

    Nanning Yi, Rong Zong, Rongrong Qian, Tao Duan. Graphene-Based Dual-Function Switchable Broadband Terahertz Polarization Converter[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2323001
    Download Citation