• Photonics Research
  • Vol. 6, Issue 3, 157 (2018)
Fajun Xiao1、*, Wuyun Shang1, Weiren Zhu2、3, Lei Han1, Malin Premaratne3, Ting Mei1, and Jianlin Zhao1、4
Author Affiliations
  • 1MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
  • 2Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia
  • 4e-mail: jlzhao@nwpu.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.000157 Cite this Article Set citation alerts
    Fajun Xiao, Wuyun Shang, Weiren Zhu, Lei Han, Malin Premaratne, Ting Mei, Jianlin Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 2018, 6(3): 157 Copy Citation Text show less
    References

    [1] M. Premaratne, M. Stockman. Theory and technology of SPASERs. Adv. Opt. Photon., 9, 79-128(2017).

    [2] J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. A. Belkin. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511, 65-69(2014).

    [3] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 6, 737-748(2012).

    [4] J. Butet, J. Duboisset, G. Bachelier, I. Russierantoine, E. Benichou, C. Jonin, P. O. Brevet. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett., 10, 1717-1721(2010).

    [5] C. Ciraci, E. Poutrina, M. Scalora, D. R. Smith. Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface. Phys. Rev. B, 86, 115451(2012).

    [6] T. Onuta, M. Waegele, C. Dufort, W. L. Schaich, B. Dragnea. Optical field enhancement at cusps between adjacent nanoapertures. Nano Lett., 7, 557-564(2007).

    [7] T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, A. Leitenstorfer. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys. Rev. Lett., 103, 257404(2009).

    [8] A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, L. Dal Negro. Multipolar second harmonic generation from planar arrays of Au nanoparticles. Opt. Express, 20, 15797-15806(2012).

    [9] K. Thyagarajan, J. Butet, O. J. F. Martin. Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Lett., 13, 1847-1851(2013).

    [10] B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett., 7, 1251-1255(2007).

    [11] M. W. Klein, C. Enkrich, M. Wegener, S. Linden. Second-harmonic generation from magnetic metamaterials. Science, 313, 502-504(2006).

    [12] S. Linden, F. B. P. Niesler, J. Forstner, Y. Grynko, T. Meier, M. Wegener. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett., 109, 015502(2012).

    [13] H. Husu, R. Siikanen, J. Makitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen. Metamaterials with tailored nonlinear optical response. Nano Lett., 12, 673-677(2012).

    [14] B. Wang, R. Wang, R. J. Liu, X. Lu, J. Zhao, Z. Li. Origin of shape resonance in second-harmonic generation from metallic nanohole arrays. Sci. Rep., 3, 2358(2013).

    [15] S. Lan, S. P. Rodrigues, Y. Cui, L. Kang, W. Cai. Electrically tunable harmonic generation of light from plasmonic structures in electrolytes. Nano Lett., 16, 5074-5079(2016).

    [16] K. O. Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 14, 379-383(2015).

    [17] V. K. Valev, A. Silhanek, N. Smisdom, B. De Clercq, W. Gillijns, O. A. Aktsipetrov, M. Ameloot, V. Moshchalkov, T. Verbiest. Linearly polarized second harmonic generation microscopy reveals chirality. Opt. Express, 18, 8286-8293(2010).

    [18] G. Bautista, M. J. Huttunen, J. M. Kontio, J. Simonen, M. Kauranen. Third- and second-harmonic generation microscopy of individual metal nanocones using cylindrical vector beams. Opt. Express, 21, 21918-21923(2013).

    [19] J. Butet, O. J. F. Martin. Nonlinear plasmonic nanorulers. ACS Nano, 8, 4931-4939(2014).

    [20] J. Butet, I. Russierantoine, C. Jonin, N. Lascoux, E. Benichou, P. Brevet. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett., 12, 1697-1701(2012).

    [21] G. F. Walsh, L. Dal Negro. Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett., 13, 3111-3117(2013).

    [22] H. Aouani, M. Navarrocia, M. Rahmani, T. P. H. Sidiropoulos, M. H. Hong, R. F. Oulton, S. A. Maier. Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett., 12, 4997-5002(2012).

    [23] S. Liu, E. S. P. Leong, G. Li, Y. Hou, J. Deng, J. Teng, H. C. Ong, D. Y. Lei. Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation. ACS Nano, 10, 1442-1453(2016).

    [24] F. Xiao, W. Zhu, W. Shang, T. Mei, M. Premaratne, J. Zhao. Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure. Opt. Express, 23, 3236-3244(2015).

    [25] J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, N. J. Halas. Designing and deconstructing the Fano lineshape in plasmonic nanoclusters. Nano Lett., 12, 1058-1062(2012).

    [26] A. Yanai, M. Grajower, G. M. Lerman, M. Hentschel, H. Giessen, U. Levy. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation. ACS Nano, 8, 4969-4974(2014).

    [27] E. D. Palik. Handbook of Optical Constants of Solids(1985).

    [28] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [29] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [30] Y. R. Shen. The Principles of Nonlinear Optics(1973).

    [31] J. I. Dadap, J. Shan, K. B. Eisenthal, T. F. Heinz. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett., 83, 4045-4048(1999).

    [32] D. Krause, C. W. Teplin, C. T. Rogers. Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum. J. Appl. Phys., 96, 3626-3634(2004).

    [33] S. Tang, D. Cho, H. Xu, W. Wu, Y. R. Shen, L. Zhou. Nonlinear responses in optical metamaterials: theory and experiment. Opt. Express, 19, 18283-18293(2011).

    [34] F. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J. R. Krenn. Dark plasmonic breathing modes in silver nanodisks. Nano Lett., 12, 5780-5783(2012).

    [35] M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, N. Liu. Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano, 5, 2042-2050(2011).

    [36] J. Ye, F. Wen, J. Lassiter, H. Sobhani, P. Van Dorpe, P. Nordlander, N. Halas. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett., 12, 1660-1667(2012).

    CLP Journals

    [1] Shuyun Teng, Qi Zhang, Han Wang, Lixia Liu, Haoran Lv. Conversion between polarization states based on a metasurface[J]. Photonics Research, 2019, 7(3): 246

    [2] Fajun Xiao, Guanglin Wang, Xuetao Gan, Wuyun Shang, Shiyin Cao, Weiren Zhu, Ting Mei, Malin Premaratne, Jianlin Zhao. Selective excitation of a three-dimensionally oriented single plasmonic dipole[J]. Photonics Research, 2019, 7(6): 693

    [3] Li Zhang, Fei Lin, Xiaodong Qiu, Lixiang Chen. Full vectorial feature of second-harmonic generation with full Poincaré beams[J]. Chinese Optics Letters, 2019, 17(9): 091901

    [4] Lei Han, Shuxia Qi, Sheng Liu, Peng Li, Huachao Cheng, Jianlin Zhao. Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient[J]. Chinese Physics B, 2020, 29(9):

    Fajun Xiao, Wuyun Shang, Weiren Zhu, Lei Han, Malin Premaratne, Ting Mei, Jianlin Zhao. Cylindrical vector beam-excited frequency-tunable second harmonic generation in a plasmonic octamer[J]. Photonics Research, 2018, 6(3): 157
    Download Citation