• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207008 (2018)
Lan Shanyou1、2, Zhang Da1、3, Liu Xiaolong1、3, and Zeng Yongyi1、4、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207008 Cite this Article Set citation alerts
    Lan Shanyou, Zhang Da, Liu Xiaolong, Zeng Yongyi. Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers[J]. Chinese Journal of Lasers, 2018, 45(2): 207008 Copy Citation Text show less
    References

    [1] Yang M, Xing L Y, Gao W D et al. Dose-effect relationship of ZnPc-PDT on tumor cells in vitro[J]. Chinese Journal of Lasers, 44, 0307001(2017).

    [2] Sazgarnia A, Montazerabadi A R. Bahreyni-Toosi M H, et al. In vitro survival of MCF-7 breast cancer cells following combined treatment with ionizing radiation and mitoxantrone-mediated photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 10, 72-78(2013). http://www.ncbi.nlm.nih.gov/pubmed/23465375

    [3] Huang Q, Ou Y S, Tao Y et al. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells[J]. Apoptosis, 21, 749-760(2016). http://link.springer.com/article/10.1007/s10495-016-1243-4

    [4] Chatterjee D K, Fong L S, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm[J]. Advanced Drug Delivery Reviews, 60, 1627-1637(2008). http://europepmc.org/abstract/MED/18930086

    [5] Vemula P K, Cruikshank G A, Karp J M et al. Self-assembled prodrugs: An enzymatically triggered drug-delivery platform[J]. Biomaterials, 30, 383-393(2009). http://www.sciencedirect.com/science/article/pii/S0142961208006947

    [6] Wang S M, Wang J, Liu J et al. Fluorescence intensity and photon dynamic treatment enhancement of Au NBPs with different aspect ratios to photosensitizer[J]. Chinese Journal of Lasers, 44, 0607003(2017).

    [7] Li S, Su Z, Sun M et al. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery[J]. International Journal of Pharmaceutics, 436, 248-257(2012). http://www.sciencedirect.com/science/article/pii/S0378517312006382

    [8] Zhang Y H, Guan Q X, Lü S W et al. Research progress and application of nanometer carrier transmission anticancer drugs targeted the tumor microenvironment[J]. Journal of Modern Oncology, 22, 2997-3001(2014).

    [9] Liu K, Xing R, Zou Q et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie, 55, 3036-3039(2016). http://www.ncbi.nlm.nih.gov/pubmed/26804551

    [10] Ke G, Zhu Z, Wang W et al. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing[J]. ACS Applied Materials & Interfaces, 6, 15329-15334(2014). http://www.ncbi.nlm.nih.gov/pubmed/25111767

    [11] Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy[J]. ACS Applied Materials & Interfaces, 7, 10671-10676(2015). http://www.ncbi.nlm.nih.gov/pubmed/25974979

    [12] Aggelidou C, Theodossiou T A, Goncalves A R et al. A versatile δ-aminolevulinic acid (ALA)-cyclodextrin bimodal conjugate-prodrug for PDT applications with the help of intracellular chemistry[J]. Beilstein Journal of Organic Chemistry, 10, 2414-2420(2014). http://europepmc.org/articles/PMC4222291

    [13] Zhang Z, Wang S, Xu H et al. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer[J]. Journal of Biomedical Optics, 20, 051043(2015). http://www.ncbi.nlm.nih.gov/pubmed/26021715

    [14] Tong H, Wang Y, Li H et al. Dual pH-responsive 5-aminolevulinic acid pseudopolyrotaxane prodrug micelles for enhanced photodynamic therapy[J]. Chemical Communications, 52, 3966-3969(2016). http://www.ncbi.nlm.nih.gov/pubmed/26882232

    [15] Wang Y, Wang H, Chen Y et al. Biomimetic pseudopolyrotaxane prodrug micelles with high drug content for intracellular drug delivery[J]. Chemical Communications, 49, 7123-7125(2013). http://europepmc.org/abstract/med/23828234

    [16] Jin E, Zhang B, Sun X et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery[J]. Journal of the American Chemical Society, 135, 933-940(2013). http://europepmc.org/abstract/med/23253016

    [17] Kondo E, Saito K, Tashiro Y et al. Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems[J]. Nature Communications, 3, 951(2012). http://www.nature.com/ncomms/journal/v3/n7/abs/ncomms1952.html

    [18] Etrych T, Subr V, Laga R et al. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours[J]. European Journal of Pharmaceutical Sciences, 58, 1-12(2014). http://www.sciencedirect.com/science/article/pii/S0928098714000906

    [19] Rikkou M D, Patrickios C S. Polymers prepared using cleavable initiators: Synthesis, characterization and degradation[J]. Progress in Polymer Science, 36, 1079-1097(2011). http://www.sciencedirect.com/science/article/pii/S0079670011000268

    [20] Ma N, Li Y, Xu H et al. Dual redox responsive assemblies formed from diselenide block copolymers[J]. Journal of the American Chemical Society, 132, 442-443(2010). http://europepmc.org/abstract/MED/20020681

    [21] Zeng X, Zhou X, Li M et al. Redox poly (ethylene glycol)-b-poly(L-lactide) micelles containing diselenide bonds for effective drug delivery[J]. Journal of Materials Science Materials in Medicine, 26, 234(2015). http://link.springer.com/article/10.1007/s10856-015-5573-5

    [22] Chen W, Zheng M, Meng F et al. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins[J]. Biomacromolecules, 14, 1214-1222(2013). http://europepmc.org/abstract/med/23477570

    [23] Lin D, Jiang Q, Cheng Q et al. Polycation-detachable nanoparticles self-assembled from mPEG-PCL-g-SS-PDMAEMA for in vitro and in vivo siRNA delivery[J]. Acta Biomaterialia, 9, 7746-7757(2013). http://europepmc.org/abstract/MED/23624221

    [24] Zhang A, Zhang Z, Shi F et al. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery[J]. Macromolecular Bioscience, 13, 1249-1258(2013). http://europepmc.org/abstract/med/23840011

    [25] Baldwina A D, Kiick K L. Reversible maleimide-thiol adducts yield glutathione-sensitive poly(ethylene glycol)-heparin hydrogels[J]. Polymer Chemistry, 4, 133-143(2013). http://www.ncbi.nlm.nih.gov/pubmed/23766781

    [26] Mari C, Pierroz V, Ferrari S et al. Combination of Ru(II) complexes and light: New frontiers in cancer therapy[J]. Chemical Science, 6, 2660-2686(2015).

    [27] Wang T, Zabarska N, Wu Y et al. Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications[J]. Chemical Communications, 51, 12552-12555(2015). http://www.ncbi.nlm.nih.gov/pubmed/26153573

    [28] Sun L C, Coy D H. Somatostatin receptor-targeted anti-cancer therapy[J]. Current Drug Delivery, 8, 2-10(2011). http://europepmc.org/abstract/MED/21034425

    [29] Tao W. Ng D Y W, Wu Y, et al. Bis-sulfide bioconjugates for glutathione triggered tumor responsive drug release[J]. Chemical Communications, 50, 1116-1118(2014). http://europepmc.org/abstract/med/24325005

    [30] Brocchini S, Balan S, Godwin A et al. PEGylation of native disulfide bonds in proteins[J]. Nature Protocols, 1, 2241-2252(2006). http://www.ncbi.nlm.nih.gov/pubmed/17406463

    [31] Brocchini S, Godwin A, Balan S et al. Disulfide bridge based PEGylation of proteins[J]. Advanced Drug Delivery Reviews, 60, 3-12(2008). http://www.sciencedirect.com/science/article/pii/S0169409X07001342

    [32] Zhang W J, Hu X L. Tumor photodynamic and chemical combination therapy based on ICG loaded camptothecin polyprodrug nanoparticles[J]. Acta Laser Biology Sinica, 25, 520-522(2016).

    [33] Amici A, Levine R L, Tsai L et al. Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions[J]. Journal of Biological Chemistry, 264, 3341-3346(1989). http://www.ncbi.nlm.nih.gov/pubmed/2563380

    [34] Ghadiali J E, Stevens M M. Enzyme-responsive nanoparticle systems[J]. Advanced Materials, 20, 4359-4363(2010).

    [35] Sun H, Benjaminsen R V, Almdal K et al. Hyaluronic acid immobilized polyacrylamide nanoparticle sensors for CD44 receptor targeting and pH measurement in cells[J]. Bioconjugate Chemistry, 23, 2247-2255(2012). http://pubs.acs.org/doi/abs/10.1021/bc300349n

    [36] Jang B, Choi Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy[J]. Theranostics, 2, 190-197(2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287428/

    [37] Almog N, Ma L, Schwager C et al. Consensus micro RNAs governing the switch of dormant tumors to the fast-growing angiogenic phenotype[J]. Plos One, 7, e44001(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3432069/

    [38] Dulkeith E, Ringler M, Klar T A et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression[J]. Nano Letters, 5, 585-589(2005). http://pubs.acs.org/doi/abs/10.1021/nl0480969

    [39] Jain P K, Lee K S. El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine[J]. Journal of Physical Chemistry B, 110, 7238-7248(2006). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=16599493

    [40] Zhang Y, Shen T T, Zhang H L et al. A multifunctional nanocomposite for luminescence resonance energy transfer-guided synergistic monitoring and therapy under single near infrared light[J]. Chemical Communications, 52, 4880-4883(2016). http://www.ncbi.nlm.nih.gov/pubmed/26912095

    [41] Wang L, Liu Y, Li W et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy[J]. Nano Letters, 11, 772-780(2011). http://europepmc.org/abstract/med/21186824

    [42] Zhang Y, Shen T T, Kirillov A M. et al. NIR light/H2O2-triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells[J]. Chemical Communications, 52, 7939-7942(2016). http://www.ncbi.nlm.nih.gov/pubmed/27172102

    [43] Wu D, Song G, Li Z et al. A two-dimensional molecular beacon for mRNA-activated intelligent cancer theranostics[J]. Chemical Science, 6, 3839-3844(2015). http://europepmc.org/abstract/MED/29218154

    [44] Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis[J]. Archives of Biochemistry and Biophysics, 417, 3-11(2003). http://www.sciencedirect.com/science/article/pii/S0003986103002832

    [45] Gupta S C, Hevia D, Patchva S et al. Upsides and downsides of reactive oxygen species for cancer: The roles of reactive oxygen species in tumorigenesis, prevention, and therapy[J]. Antioxidants & Redox Signaling, 16, 1295-1322(2012). http://europepmc.org/abstract/med/22117137

    [46] Liu Y H, Zhou J P, Huo M R. Advances in the tumor microenviroment-responsive smart drug delivery nanosystem[J]. Journal of China Pharmaceutical University, 47, 125-133(2016).

    [47] Kim H, Kim Y, Kim I H et al. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages[J]. Theranostics, 4, 1-11(2013). http://www.ncbi.nlm.nih.gov/pubmed/24396511

    [48] Hamblin M R, Miller J L, Rizvi I et al. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer[J]. Cancer Research, 61, 7155-7162(2001). http://europepmc.org/abstract/MED/11585749

    [49] Yue C, Zhang C, Alfranca G et al. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy[J]. Theranostics, 6, 456-469(2016). http://europepmc.org/articles/PMC4775857/

    [50] He Y L. Environment-responsive nanocarriers for drug and gene delivery to cancer cells[D]. Lanzhou: Lanzhou University(2013).

    [51] Zhang D, Zheng A, Li J et al. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma[J]. Theranostics, 7, 164-179(2017).

    Lan Shanyou, Zhang Da, Liu Xiaolong, Zeng Yongyi. Tumor-Microenvironment Activable Smart Nanocarrier System for Photodynamic Therapy of Cancers[J]. Chinese Journal of Lasers, 2018, 45(2): 207008
    Download Citation