• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220312 (2022)
Di Xia1、2, Jiaxin Zhao1、2, Jiayue Wu1、2, Zifu Wang1、2, Bin Zhang1、2, and Zhaohui Li1、2、3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • show less
    DOI: 10.3788/IRLA20220312 Cite this Article
    Di Xia, Jiaxin Zhao, Jiayue Wu, Zifu Wang, Bin Zhang, Zhaohui Li. Integrated chalcogenide frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220312 Copy Citation Text show less
    References

    [1] L Chang, S Liu, J E Bowers. Integrated optical frequency comb technologies. Nature Photonics, 16, 95-108(2022).

    [2] S A Diddams, K Vahala, T Udem. Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [3] S B Papp, K Beha, P Del’Haye, et al. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [4] D T Spencer, T Drake, T C Briles, et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [5] I Coddington, N Newbury, W Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [6] J Riemensberger, A Lukashchuk, M Karpov, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [7] Y Geng, H Zhou, X Han, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nature Communications, 13, 1-8(2022).

    [8] C W Chou, A L Collopy, C Kurz, et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science, 367, 1458-1461(2020).

    [9] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [10] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [11] W Wang, L Wang, W Zhang. Advances in soliton microcomb generation. Advanced Photonics, 2, 034001(2020).

    [12] Haojing Chen, Yunfeng Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited). Infrared and Laser Engineering, 50, 20210560(2021).

    [13] H Jung, S P Yu, D R Carlson, et al. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811-817(2021).

    [14] L Chang, W Xie, H Shu, et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications, 11, 1331(2020).

    [15] J Liu, G Huang, R N Wang, et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 12, 2236(2021).

    [16] X Liu, Z Gong, A W Bruch, et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications, 12, 5428(2021).

    [17] A G Griffith, R K Lau, J Cardenas, et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6, 6299(2015).

    [18] K Y Yang, D Y Oh, S H Lee, et al. Bridging ultrahigh-Q devices and photonic circuits. Nature Photonics, 12, 297-302(2018).

    [19] Y He, Q F Yang, J Ling, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [20] Y Zheng, C Sun, B Xiong, et al. Integrated gallium nitride nonlinear photonics. Laser & Photonics Reviews, 15, 2100071(2021).

    [21] M A Guidry, D M Lukin, K Y Yang, et al. Quantum optics of soliton microcombs. Nature Photonics, 16, 52-58(2022).

    [22] D Grassani, E Tagkoudi, H Guo, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nature Communications, 10, 1553(2019).

    [23] C Bao, Z Yuan, L Wu, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nature Communications, 12, 6573(2021).

    [24] C Wang, Z Fang, A Yi, et al. High-Q microresonators on 4 H-silicon-carbide-on-insulator platform for nonlinear photonics. Light: Science & Applications, 10, 1-11(2021).

    [25] B J Eggleton, B Luther-Davies, K Richardson. Chalcogenide photonics. Nature Photonics, 5, 141-148(2011).

    [26] Y Yu, X Gai, P Ma, et al. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Optics Letters, 41, 958-961(2016).

    [27] R Ahmad, M Rochette. All-chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire. IEEE Journal of Selected Topics in Quantum Electronics, 20, 299-304(2014).

    [28] B Morrison, A Casas-Bedoya, G Ren, et al. Compact Brillouin devices through hybrid integration on silicon. Optica, 4, 847-854(2017).

    [29] B Zhang, P Zeng, Z Yang, et al. On-chip chalcogenide microresonators with low-threshold parametric oscillation. Photonics Research, 9, 1272-1279(2021).

    [30] D G Kim, S Han, J Hwang, et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nature Communications, 11, 5933(2020).

    [31] W C Jiang, K Li, X Gai, et al. Ultra-low-power four-wave mixing wavelength conversion in high-Q chalcogenide microring resonators. Optics Letters, 46, 2912-2915(2021).

    [32] Yang, Z, R Zhang, Z Wang, et al. High-Q, submicron-confined chalcogenide microring resonators. Optics Express, 29, 33225-33233(2021).

    [33] Q Du, Y Huang, J Li, et al. Low-loss photonic device in Ge–Sb–S chalcogenide glass. Optics Letters, 41, 3090-3093(2016).

    [34] Xia D, Yang Z, Zeng P, et al. Soliton Microcombs in Integrated Chalcogenide Micresonats [J]. arXiv, 2022: 2202.05992.

    [35] J Song, X Guo, W Peng, et al. Stimulated Brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides. Journal of Lightwave Technology, 39, 5048-5053(2021).

    [36] H Shang, D Sun, M Zhang, et al. On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890-3895(2021).

    [37] D Xia, Y F Huang, B Zhang, et al. Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser & Photonics Reviews, 16, 2100443(2022).

    [38] Xia D, Zeng P, Yang Z, et al. Kerr frequency comb generation in photonic integrated GeAsS chalcogenide micresonats [C]CLEO: Science Innovations, 2020: SW4J. 2.

    [39] Xia D, Yang Z, Zeng P, et al. Integrated GeSbS chalcogenide micresonat on chip f nonlinear photonics [C]Conference on Lasers ElectroOpticsPacific Rim, 2020: C3C_1.

    [40] X Xue, Y Xuan, Y Liu, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).

    [41] X Xue, Y Xuan, P H Wang, et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser & Photonics Reviews, 9, L23-L28(2015).

    [42] T Tan, Z Yuan, H Zhang, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 1-8(2021).

    [43] Y Bai, M Zhang, Q Shi, et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Physical Review Letters, 126, 063901(2021).

    Di Xia, Jiaxin Zhao, Jiayue Wu, Zifu Wang, Bin Zhang, Zhaohui Li. Integrated chalcogenide frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220312
    Download Citation