• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220312 (2022)
Di Xia1、2, Jiaxin Zhao1、2, Jiayue Wu1、2, Zifu Wang1、2, Bin Zhang1、2, and Zhaohui Li1、2、3
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Electrical and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • 2Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • show less
    DOI: 10.3788/IRLA20220312 Cite this Article
    Di Xia, Jiaxin Zhao, Jiayue Wu, Zifu Wang, Bin Zhang, Zhaohui Li. Integrated chalcogenide frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220312 Copy Citation Text show less

    Abstract

    Chalcogenide glass integrated microresonators (chalcogenide microresonators) have attracted great attention in nonlinear integrated photonics in recent years because of their high linear refraction index, high nonlinearity coefficient, ultra-wide transmittance window, low thermo-optic coefficient, and precisely regulated dispersion with conventional semiconductor micro-nanofabrication technology. Recently, the researchers from the Sun Yat-sun University developed a novel chalcogenide glass (Ge25Sb10S65) material platform and realized a series of high-quality chalcogenide integrated photonic devices. The progress of integrated soliton microcombs generation and regulation based on chalcogenide microresonators was reviewed. The integrated chalcogenide microresonators with high-quality factors(Q>106) were achieved by a modified nanofabrication process. Furthermore, mode-locked soliton microcombs with a low pump power and a widely tunable Kerr-Raman comb were achieved by precisely controlling the dispersion , respectively.
    Di Xia, Jiaxin Zhao, Jiayue Wu, Zifu Wang, Bin Zhang, Zhaohui Li. Integrated chalcogenide frequency combs (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220312
    Download Citation