• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230102 (2020)
Long Zhang1、2、3, Xiaokun Wang1、2、*, Qiang Cheng1、2, and Ruoqiu Wang1、2
Author Affiliations
  • 1Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 2Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP57.230102 Cite this Article Set citation alerts
    Long Zhang, Xiaokun Wang, Qiang Cheng, Ruoqiu Wang. Optical Co-Phasing Detection Technology of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230102 Copy Citation Text show less
    References

    [1] Zhang X J, Fan Y C, Bao H et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 24, 2613-2626(2016).

    [2] Xu H, Yang L W, Yang H S. Recent progress of active support system for large optical telescope primary mirror[J]. Laser & Optoelectronics Progress, 55, 100002(2018).

    [3] Zhou C H, Wang Z L, Zhu F. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 10, 25-38(2017).

    [4] Adkins S M. McLean I S, Fitzgerald M P, et al. New developments in instrumentation at the W. M. Keck observatory[J]. Proceedings of SPIE, 9908, 990805(2016).

    [5] Cabrera-Lavers A. Corradi R L M. Overview of the instrumentation programme of the 10.4 m GTC telescope[J]. Proceedings of SPIE, 9908, 990803(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2542933

    [6] McCarthy P J, Fanson J, Bernstein R et al. Overview and status of the giant Magellan telescope project[J]. Proceedings of SPIE, 9906, 990612(2016). http://www.researchgate.net/publication/306261939_Overview_and_status_of_the_Giant_Magellan_Telescope_Project

    [7] Nelson J, Sanders G H. The status of the thirty meter telescope project[J]. Proceedings of SPIE, 7012, 70121A(2008).

    [8] Tamai R, Cirasuolo M, González J C et al. The E-ELT program status[J]. Proceedings of SPIE, 9906, 99060W(2016).

    [9] Greenhouse M. The James Webb space telescope:mission overview and status. [C]∥2019 IEEE Aerospace Conference, March 2-9, 2019, Big Sky, MT, USA. New York: IEEE, 1-13(2019).

    [10] Peng J T. Research on the optical testing andco-phasing technology for large aperture segmented mirror systems based on computer-generated holograms Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,[D]. University of Chinese Academy of Science, 31-32(2017).

    [11] Zhang Y F, Xian H. Statistical properties of wavefront and image field of misaligned segmented optical systems[J]. Acta Optica Sinica, 39, 1111004(2019).

    [12] Dong L. Multi-spectral co-phasing error detection in optical synthetic aperture telescopes[D]. Beijing: University of Chinese Academy of Sciences, 22-31(2019).

    [13] Wei H S. Large aperture space optical system test based on scanning Hartmann Changchun: Changchun Institute of Optics, Fine Mechanics and Physics,[D]. University of Chinese Academy of Science, 5-6(2018).

    [14] Chanan G A, Mast T S, Nelson J E et al. Phasing the mirror segments of the W. M. Keck telescope[J]. Proceedings of SPIE, 2199, 622-637(1994).

    [15] Zhang Y F, Xian H. Effects of gap and decenter of mask on narrow-band algorithm with ideal templates for co-phasing a segmented mirror[J]. Laser & Optoelectronics Progress, 57, 081101(2020).

    [16] Chanan G, Troy M, Dekens F et al. Phasing the mirror segments of the Keck telescopes:the broadband phasing algorithm[J]. Applied Optics, 37, 140-155(1998).

    [17] Chanan G, Ohara C, Troy M. Phasing the mirror segments of the Keck telescopes II:the narrow-band phasing algorithm[J]. Applied Optics, 39, 4706-4714(2000).

    [18] Chanan G A, Troy M, Ohara C M. Phasing the primary mirror segments of the Keck telescopes: a comparison of different techniques[J]. Proceedings of SPIE, 4003, 188-202(2000).

    [19] Devaney N, Cavaller-Marques L, Jochum L et al. GUACAMOLE: the GTC guiding, acquisition, and calibration module[J]. Proceedings of SPIE, 4003, 146-153(2000).

    [20] Schumacher A, Devaney N, Montoya L. Phasing segmented mirrors: a modification of the Keck narrow-band technique and its application to extremely large telescopes[J]. Applied Optics, 41, 1297-1307(2002).

    [21] Devaney N, Schumacher A. Cophasing techniques for extremely large telescopes[J]. Proceedings of SPIE, 5382, 431-439(2004).

    [22] Álvarez P, Castro J, Rutten R et al. The GTC project:from commissioning to regular science operation. current performance and first science results[J]. Proceedings of SPIE, 7733, 773305(2010). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=750466

    [23] Troy M, Chanan G, Michaels S et al. A conceptual design for the thirty meter telescope alignment and phasing system[J]. Proceedings of SPIE, 7012, 70120Y(2008).

    [24] Yaitskova N, Gonte F, Derie F et al. The active phasing experiment: part I. concept and objectives[J]. Proceedings of SPIE, 6267, 62672Z(2006).

    [25] Gonte F, Mazzoleni R, Surdej I et al. On-sky performances of an optical phasing sensor based on a cylindrical lenslet array for segmented telescopes[J]. Applied Optics, 50, 1660-1667(2011).

    [26] Su D Q, Cui X Q. Active optics: key technology of the new generation telescopes[J]. Progress in Astronomy, 17, 1-14(1999).

    [27] Su D Q, Zou W Y, Zhang Z C et al. Experimental system of segmented-mirror active optics[J]. Proceedings of SPIE, 4003, 417-425(2000).

    [28] Lin X D, Wang J L, Liu X Y et al. Co-phase experiment of active optics for segmented-mirrors[J]. Optics and Precision Engineering, 18, 563-569(2010).

    [29] Li B, Yu W H, Chen M et al. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 56, 8871-8879(2017).

    [30] Riccardi A, Bindi N, Ragazzoni R et al. Laboratory characterization of a Foucault-like wavefront sensor for adaptive optics[J]. Proceedings of SPIE, 3353, 941-951(1998).

    [31] Esposito S, Devaney N[2020-02-11]. Segmented telescopes co-phasing using pyramid sensor [2020-02-11].https:∥www.researchgate.net/publication/234237604_Segmented_telescopes_co-phasing_using_Pyramid_Sensor..

    [32] Esposito S, Pinna E, Puglisi A et al. Pyramid sensor for segmented mirror alignment[J]. Optics Letters, 30, 2572-2574(2005).

    [33] Tozzi A, Stefanini P, Pinna E et al. The double pyramid wavefront sensor for LBT[J]. Proceedings of SPIE, 7015, 701558(2008).

    [34] Pinna E. Study and characterization of the pyramid wavefront sensor for co-phasing[D]. Firenze: Università Degli Studi Di Firenze, 53-54(2010).

    [35] Pinna E. Quir o's-Pacheco-F, Esposito S, et al. The pyramid phasing sensor (PYPS)[J]. Proceedings of SPIE, 7012, 70123D(2008).

    [36] Zhu N H, Chen X Y, Zhou D et al. Study on measuring piston error of segmented mirror using pyramid sensor[J]. Chinese Journal of Sensors and Actuators, 22, 433-437(2009).

    [37] Yan Z J, Yang P Q, Chen X Y. Pupil calibration method of non-modulation pyramid wavefront sensor[J]. Acta Optica Sinica, 36, 0601002(2016).

    [38] Yan Z J, Zheng L X, Wang C Y et al. Application of pyramid sensor for co-phasing space optical interferometric telescope[J]. Acta Photonica Sinica, 47, 1128002(2018).

    [39] Wang J X, Bai F Z, Ning Y et al. Comparison between non-modulation four-sided and two-sided pyramid wavefront sensor[J]. Optics Express, 18, 27534-27549(2010).

    [40] Koechlin L, Lawson P R, Mourard D et al. Dispersed fringe tracking with the multi-r0 apertures of the Grand Interféromètre à 2 Télescopes[J]. Applied Optics, 35, 3002-3009(1996).

    [41] Shi F, Redding D C, Bowers C W et al. DCATT dispersed fringe sensor:modeling and experimenting with the transmissive phase plates[J]. Proceedings of SPIE, 4013, 757-762(2000).

    [42] Shi F, Redding D C, Lowman A E et al. Segmented mirror coarse phasing with a dispersed fringe sensor:experiments on NGST's wavefront control testbed[J]. Proceedings of SPIE, 4850, 318-328(2003).

    [43] Shi F, Ohara C M, Chanan G et al. Experimental verification of dispersed fringe sensing as a segment-phasing technique using the Keck telescope[J]. Proceedings of SPIE, 5489, 1061-1073(2004).

    [44] Albanese M, Wirth A, Jankevics A et al. Verification of the James Webb space telescope coarse phase sensor using the Keck telescope[J]. Proceedings of SPIE, 6265, 62650Z(2006).

    [45] Bouchez A H. McLeod B A, Scott Acton D, et al. The Giant Magellan telescope phasing system[J]. Proceedings of SPIE, 8447, 84473S(2012).

    [46] Kanneganti S. McLeod B A, Ordway M P, et al. A prototype phasing camera for the Giant Magellan telescope[J]. Proceedings of SPIE, 8447, 844752(2012).

    [47] van Dam M, Brian M. -01-01)[2020-02-08][EB/OL]. Antonin B. Measuring segment piston with a dispersed fringe sensor on the Giant Magellan telescope.(2015). https://www.mysciencework.com/publication/show/measuring-segment-piston-dispersed-fringe-sensor-giant-magellan-telescope-797c08d3.

    [48] van Dam M A, McLeod B A, Bouchez A H. Dispersed fringe sensor for the Giant Magellan telescope[J]. Applied Optics, 55, 539-547(2016).

    [49] Scott Acton D, Scott Knight J, Contos A et al. Wavefront sensing and controls for the James Webb space telescope[J]. Proceedings of SPIE, 8442, 84422H(2012).

    [50] Shi F, Redding D C, Green J J et al. Performance of segmented mirror coarse phasing with a dispersed fringe sensor:modeling and simulations[J]. Proceedings of SPIE, 5487, 897-908(2004).

    [51] Shi F, Basinger S A, Redding D C. Performance of dispersed fringe sensor in the presence of segmented mirror aberrations:modeling and simulation[J]. Proceedings of SPIE, 6265, 62650Y(2006).

    [52] Spechler J A, Hoppe D J, Sigrist N et al. Advanced DFS:a dispersed fringe sensing algorithm insensitive to small calibration errors[J]. Proceedings of SPIE, 7731, 773155(2010).

    [53] Zhang Y, Liu G R, Wang Y F et al. Preliminary study of a dispersed fringe type sensing system[J]. Research in Astronomy and Astrophysics, 9, 945-952(2009).

    [54] Zhang Y, Zhang L, Liu G R et al. Experimental study of segmented mirrors co-phase using dispersed fringe sensor[J]. Acta Optica Sinica, 31, 0212004(2011).

    [55] Zhang Y, Cui X Q, Liu G R et al. Outdoors phasing progress of dispersed fringe sensing technology in NIAOT, China[J]. Proceedings of SPIE, 8444, 844461(2012).

    [56] Yan Z J, Chen X Y, Zheng L X et al. Zero co-phasing reference calibration method based on dispersed interferogram for segmented mirror telescope[J]. Acta Physica Sinica, 65, 302-310(2016).

    [57] Li Y, Wang S Q, Rao C H. Dispersed-fringe-accumulation-based left-subtract-right method for fine co-phasing of a dispersed fringe sensor[J]. Applied Optics, 56, 4267-4273(2017).

    [58] Zhang Y F, Xian H. Coarse co-phasing method based on slope of visibility-enhanced dispersed fringe pattern for segmented telescope[J]. Optics Communications, 459, 124998(2020).

    [59] Zhang Y F, Xian H. Piston sensing via a dispersed fringe sensor with a merit-function-based active scanning algorithm at low light levels[J]. Chinese Optics Letters, 17, 121101(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ2b82ba4dbd46dddf

    [60] Meng Y H, Xu S Y, Xu B Q. Method of segmented mirrorco-phasing based on dispersed fringe sensing technology[J]. Acta Optica Sinica, 36, 0911006(2016).

    [61] Zhang C Y, Xu S Y, Xu B Q et al. Correction for effect of calibration error on accuracy of co-phasing error detection of dispersed fringe[J]. Acta Optica Sinica, 38, 0711003(2018).

    [62] Gerchberg R W, Saxton W O. Practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik (Stuttgart), 35, 237-250(1972).

    [63] Li Q, Wu Z, Xu J S et al. Phase recovery algorithm based on pupil diversity[J]. Acta Optica Sinica, 39, 0626001(2019).

    [64] Dean B H, Aronstein D L, Scott Smith J et al. Phase retrieval algorithm for JWST flight and testbed telescope[J]. Proceedings of SPIE, 6265, 626511(2006).

    [65] Bikkannavar S, Redding D, Green J et al. Phase retrieval methods for wavefront sensing[J]. Proceedings of SPIE, 7739, 77392X(2010).

    [66] Zielinski T P. Robust image-based wavefront sensing Rochester,[D]. NY: University of Rochester, 3-4(2011).

    [67] Jurling A S. Advances in algorithms for image based wavefront sensing Rochester,[D]. New York: University of Rochester, 5-6(2015).

    [68] Fienup J R. Phase retrieval algorithms:a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [69] Fienup J R. Phase-retrieval algorithms for a complicated optical system[J]. Applied Optics, 32, 1737-1746(1993).

    [70] Fienup J R. Phase retrieval for undersampled broadband images[J]. Journal of the Optical Society of America A, 16, 1831-1837(1999).

    [71] Brady G R, Fienup J R. Nonlinear optimization algorithm for retrieving the full complex pupil function[J]. Optics Express, 14, 474-486(2006).

    [72] Thurman S T, Fienup J R. Phase retrieval with signal bias[J]. Journal of the Optical Society of America A, 26, 1008-1014(2009).

    [73] Jurling A S, Fienup J R. Applications of algorithmic differentiation to phase retrieval algorithms[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, 1348-1359(2014).

    [74] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 215829(1982).

    [75] Paxman R G, Fienup J R. Optical misalignment sensing and image reconstruction using phase diversity[J]. Journal of the Optical Society of America A, 5, 914-923(1988).

    [76] Paxman R G, Schulz T J, Fienup J R. Joint estimation of object and aberrations by using phase diversity[J]. Journal of the Optical Society of America A, 9, 1072-1085(1992).

    [77] Kendrick R L, Scott Acton D, Duncan A L. Experimental results from the Lockheed phase diversity test facility[J]. Proceedings of SPIE, 2302, 312-322(1994).

    [78] Lofdahl M G, Kendrick R L, Harwit A et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck II telescope[J]. Proceedings of SPIE, 3356, 1190-1201(1998).

    [79] Liang S T, Yang J F, Xue B. A new phase diversity wave-front error sensing method based on genetic algorithm[J]. Acta Optica Sinica, 30, 1015-1019(2010).

    [80] Luo Q, Huang L H, Gu N T et al. Experimental study on phase diversity wavefront sensing technology in piston error detection[J]. Acta Physica Sinica, 61, 529-536(2012).

    [81] Yue D, Xu S, Nie H. Co-phasing of the segmented mirror and image retrieval based on phase diversity using a modified algorithm[J]. Applied Optics, 54, 7917-7924(2015).

    [82] Gonté F, Araujo C, Bourtembourg R et al. On-sky testing of the active phasing experiment[J]. The Messenger, 136, 25-31(2009).

    [83] Wang S S, Zhu Q D, Cao G R. Cophasing methods of segmented space telescope[J]. Acta Optica Sinica, 29, 2435-2440(2009).

    [84] Pinna E, Esposito S, Puglisi A et al. Phase ambiguity solution with the pyramid phasing sensor[J]. Proceedings of SPIE, 6267, 62672Y(2006).

    [85] Paine S W, Fienup J R. Extending capture range for piston retrieval in segmented systems[J]. Applied Optics, 56, 9186-9192(2017).

    [86] Guerra-Ramos D, Díaz-García L, Trujillo-Sevilla J et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 43, 4264-4267(2018).

    [87] Thurman S T. Method of obtaining wavefront slope data from through-focus point spread function measurements[J]. Journal of the Optical Society of America A, 28, 1-7(2011).

    [88] Carlisle R E, Acton D S. Demonstration of extended capture range for James Webb space telescope phase retrieval[J]. Applied Optics, 54, 6454-6460(2015).

    CLP Journals

    [1] MA Huimin, TAN Lei, ZHANG Jinghui, ZHANG Pengfei, NING Xiaomei, LIU Haiqiu, GAO Yanwei. Review of co-phasing error detection for synthetic aperture imaging system based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 927

    Long Zhang, Xiaokun Wang, Qiang Cheng, Ruoqiu Wang. Optical Co-Phasing Detection Technology of Segmented Telescopes[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230102
    Download Citation