• Acta Optica Sinica
  • Vol. 43, Issue 17, 1712003 (2023)
Zhenzhen Liu, Xiaoxian Liu, Yansong Sun**, and Rui Xiao*
Author Affiliations
  • Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine, PLA Academy of Military Sciences, Beijing 100071, China
  • show less
    DOI: 10.3788/AOS230922 Cite this Article Set citation alerts
    Zhenzhen Liu, Xiaoxian Liu, Yansong Sun, Rui Xiao. Research Progress on SERS Immunochromatographic Assay Technology Based on Novel Nanomaterials[J]. Acta Optica Sinica, 2023, 43(17): 1712003 Copy Citation Text show less
    References

    [1] Liu J, Ren X B, Yao Y et al. Tendency and strategy of China′s biological security[J]. Bulletin of Chinese Academy of Sciences, 31, 387-393(2016).

    [2] Yu L, Wang J Y, Li X L et al. Simultaneous detection of SARS-CoV-2 and pandemic (H1N1) 2009 virus with real-time isothermal platform[J]. Heliyon, 7, e07584(2021).

    [3] Doern C D, Butler-Wu S M. Emerging and future applications of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry in the clinical microbiology laboratory[J]. The Journal of Molecular Diagnostics, 18, 789-802(2016).

    [4] Pankhurst L J, del Ojo Elias C, Votintseva A A et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study[J]. The Lancet Respiratory Medicine, 4, 49-58(2016).

    [5] Liu Y R, Tan Y Y, Fu Q Y et al. Reciprocating-flowing on-a-chip enables ultra-fast immunobinding for multiplexed rapid ELISA detection of SARS-CoV-2 antibody[J]. Biosensors and Bioelectronics, 176, 112920(2021).

    [6] Richert-Pöggeler K R, Franzke K, Hipp K et al. Electron microscopy methods for virus diagnosis and high resolution analysis of viruses[J]. Frontiers in Microbiology, 9, 3255(2019).

    [7] Shiu C M, Wang J J, Yu F Y. Sensitive enzyme-linked immunosorbent assay and rapid one-step immunochromatographic strip for fumonisin B1 in grain-based food and feed samples[J]. Journal of the Science of Food and Agriculture, 90, 1020-1026(2010).

    [8] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [9] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [10] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20(1977).

    [11] Wang C W, Li P, Wang J F et al. Polyethylenimine-interlayered core-shell-satellite 3D magnetic microspheres as versatile SERS substrates[J]. Nanoscale, 7, 18694-18707(2015).

    [12] Li J, Wang C W, Kang H Q et al. Label-free identification carbapenem-resistant Escherichia coli based on surface-enhanced resonance Raman scattering[J]. RSC Advances, 8, 4761-4765(2018).

    [13] Israelsen N D, Wooley D, Hanson C et al. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate[J]. Journal of Biological Engineering, 10, 1-12(2016).

    [14] Porter M D, Lipert R J, Siperko L M et al. SERS as a bioassay platform: fundamentals, design, and applications[J]. Chemical Society Reviews, 37, 1001-1011(2008).

    [15] Lane L A, Qian X M, Nie S M. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging[J]. Chemical Reviews, 115, 10489-10529(2015).

    [16] Wang Y Q, Yan B, Chen L X. SERS tags: novel optical nanoprobes for bioanalysis[J]. Chemical Reviews, 113, 1391-1428(2013).

    [17] Ding S Y, Yi J, Li J F et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 1, 16021(2016).

    [18] Wang C W, Shi D W, Wan N et al. Development of spike protein-based fluorescence lateral flow assay for the simultaneous detection of SARS-CoV-2 specific IgM and IgG[J]. The Analyst, 146, 3908-3917(2021).

    [19] Wu Z. Simultaneous detection of Listeria monocytogenes and Salmonella typhimurium by a SERS-based lateral flow immunochromatographic assay[J]. Food Analytical Methods, 12, 1086-1091(2019).

    [20] Wu T, Li J X, Zheng S A et al. Magnetic nanotag-based colorimetric/SERS dual-readout immunochromatography for ultrasensitive detection of clenbuterol hydrochloride and ractopamine in food samples[J]. Biosensors, 12, 709(2022).

    [21] Chen M H, Luo R, Li S H et al. Paper-based strip for ultrasensitive detection of OSCC-associated salivary microRNA via CRISPR/Cas12a coupling with IS-primer amplification reaction[J]. Analytical Chemistry, 92, 13336-13342(2020).

    [22] Wang D M, He S G, Wang X H et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA[J]. Nature Biomedical Engineering, 4, 1150-1158(2020).

    [23] Liu Z Z, Wang C W, Zheng S et al. Simultaneously ultrasensitive and quantitative detection of influenza A virus, SARS-CoV-2, and respiratory syncytial virus via multichannel magnetic SERS-based lateral flow immunoassay[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 47, 102624(2023).

    [24] Zhuang J W, Zhao Z Y, Lian K et al. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods[J]. Biosensors and Bioelectronics, 207, 114167(2022).

    [25] Wang Y, Sun E Q, Yang X X et al. Preparation of Mo1-xWxS2 alloy material and crystal structure by hydrothermal synthesis[J]. Acta Optica Sinica, 42, 0416001(2022).

    [26] Liu E W, Yang Z L, Han L J et al. Fabrication and SERS activity of Cu2O-Ag substrate by in situ growth[J]. Acta Optica Sinica, 41, 0724002(2021).

    [27] Jiang M, Zhu Y, Zhang J. Titanium dioxide/silver composite structure prepared and Raman enhancement experiment[J]. Acta Optica Sinica, 42, 0429001(2022).

    [28] Yu J, Yang H, Wu J et al. Ultrafast laser fabrication of surface-enhanced Raman scattering sensors[J]. Opto-Electronic Engineering, 50, 220333(2023).

    [29] Yin Z, Ni C, Wu S et al. Femtosecond laser direct writing processing of SERS substrates and applications[J]. Opto-Electronic Engineering, 50, 220322(2023).

    [30] Huang Z C, Zhang A M, Zhang Q A et al. Nanomaterial-based SERS sensing technology for biomedical application[J]. Journal of Materials Chemistry B, 7, 3755-3774(2019).

    [31] Zhang K H, Wang C W, Rong Z et al. Silver coated magnetic microflowers as efficient and recyclable catalysts for catalytic reduction[J]. New Journal of Chemistry, 41, 14199-14208(2017).

    [32] Maneeprakorn W, Bamrungsap S, Apiwat C et al. Surface-enhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection[J]. RSC Advances, 6, 112079-112085(2016).

    [33] Jia X F, Wang C W, Rong Z et al. Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of Mycoplasma pneumoniae infection[J]. RSC Advances, 8, 21243-21251(2018).

    [34] Deng D D, Yang H, Liu C et al. Ultrasensitive detection of diclofenac in water samples by a novel surface-enhanced Raman scattering (SERS)-based immunochromatographic assay using AgMBA@SiO2-Ab as immunoprobe[J]. Sensors and Actuators B, 283, 563-570(2019).

    [35] Chen Z Y, Sun Y E, Shi J Y et al. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice[J]. Food Chemistry, 370, 131276(2022).

    [36] Lu L C, Yu J L, Liu X X et al. Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods[J]. RSC Advances, 10, 271-281(2020).

    [37] Khlebtsov B N, Bratashov D N, Byzova N A et al. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags[J]. Nano Research, 12, 413-420(2019).

    [38] Zhang X L, Zhang J, Zhu Y. Microfluidic surface-enhanced Raman scattering experiment using CNTs/AgNPs composite structure[J]. Chinese Journal of Lasers, 46, 1011001(2019).

    [39] Gao D H, Yang X H, Teng P P et al. On-line SERS detection of bilirubin based on the optofluidic in-fiber integrated GO/Ag NPs for rapid diagnosis of jaundice[J]. Talanta, 234, 122692(2021).

    [40] Barveen N R, Wang T J, Chang Y H. A photochemical approach to anchor Au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine[J]. Microchimica Acta, 189, 1-12(2021).

    [41] Shen W Z, Wang C G, Zheng S et al. Ultrasensitive multichannel immunochromatographic assay for rapid detection of foodborne bacteria based on two-dimensional film-like SERS labels[J]. Journal of Hazardous Materials, 437, 129347(2022).

    [42] Liu L, Shangguan C J, Guo J L et al. Ultrasensitive SERS detection of cancer-related miRNA-182 by MXene/MoS2@AuNPs with controllable morphology and optimized self-internal standards[J]. Advanced Optical Materials, 8, 2001214(2020).

    [43] Zhang C, Li C H, Yu J et al. SERS activated platform with three-dimensional hot spots and tunable nanometer gap[J]. Sensors and Actuators B, 258, 163-171(2018).

    [44] Wang C W, Wang C G, Li J X et al. Ultrasensitive and multiplex detection of four pathogenic bacteria on a bi-channel lateral flow immunoassay strip with three-dimensional membrane-like SERS nanostickers[J]. Biosensors and Bioelectronics, 214, 114525(2022).

    [45] Zheng S, Wang C G, Li J X et al. Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots: a powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples[J]. Chemical Engineering Journal, 448, 137760(2022).

    [46] Singh J, Kumar S, Soni R K. Synthesis of 3D-MoS2 nanoflowers with tunable surface area for the application in photocatalysis and SERS based sensing[J]. Journal of Alloys and Compounds, 849, 156502(2020).

    [47] Xia J, Lu D, Liu Y F et al. Prediction of premature rupture of membranes via simultaneous detection of procalcitonin and interleukin-6 by a SERS-based immunochromatographic assay[J]. New Journal of Chemistry, 44, 17099-17111(2020).

    [48] Zhang L, Huang Y J, Wang J Y et al. Hierarchical flowerlike gold nanoparticles labeled immunochromatography test strip for highly sensitive detection of Escherichia coli O157∶H7[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 31, 5537-5544(2015).

    [49] Wang R, Kim K, Choi N et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips[J]. Sensors and Actuators B, 270, 72-79(2018).

    [50] Shi L L, Xu L, Xiao R et al. Rapid, quantitative, high-sensitive detection of Escherichia coli O157∶H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay[J]. Frontiers in Microbiology, 11, 596005(2020).

    [51] Tu Z J, Cheng S Y, Dong H et al. Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags[J]. RSC Advances, 12, 27344-27354(2022).

    [52] Jia X F, Liu Z Z, Peng Y J et al. Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS-LFIA detector[J]. Microchimica Acta, 188, 1-9(2021).

    [53] Lu M D, Joung Y, Jeon C S et al. Dual-mode SERS-based lateral flow assay strips for simultaneous diagnosis of SARS-CoV-2 and influenza a virus[J]. Nano Convergence, 9, 1-12(2022).

    [54] Wang C W, Wang C G, Wang X L et al. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses[J]. ACS Applied Materials & Interfaces, 11, 19495-19505(2019).

    [55] Zhang W J, Tang S S, Jin Y P et al. Multiplex SERS-based lateral flow immunosensor for the detection of major mycotoxins in maize utilizing dual Raman labels and triple test lines[J]. Journal of Hazardous Materials, 393, 122348(2020).

    [56] Hwang J, Lee S, Choo J. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B[J]. Nanoscale, 8, 11418-11425(2016).

    [57] Jia X F, Wang K L, Li X Y et al. Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 41, 102522(2022).

    [58] Fu X L, Cheng Z Y, Yu J M et al. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA[J]. Biosensors and Bioelectronics, 78, 530-537(2016).

    [59] Zhang D, Huang L, Liu B et al. Rapid and ultrasensitive quantification of multiplex respiratory tract infection pathogen via lateral flow microarray based on SERS nanotags[J]. Theranostics, 9, 4849-4859(2019).

    [60] Wang W J, Li Y, Nie A X et al. A portable SERS reader coupled with catalytic hairpin assembly for sensitive microRNA-21 lateral flow sensing[J]. Analyst, 146, 848-854(2021).

    [61] Pang Y F, Li Q, Wang C W et al. CRISPR-cas12a mediated SERS lateral flow assay for amplification-free detection of double-stranded DNA and single-base mutation[J]. Chemical Engineering Journal, 429, 132109(2022).

    [62] Chen S L, Meng L W, Wang L T et al. SERS-based lateral flow immunoassay for sensitive and simultaneous detection of anti-SARS-CoV-2 IgM and IgG antibodies by using gap-enhanced Raman nanotags[J]. Sensors and Actuators B, 348, 130706(2021).

    [63] Liu H F, Dai E H, Xiao R et al. Development of a SERS-based lateral flow immunoassay for rapid and ultra-sensitive detection of anti-SARS-CoV-2 IgM/IgG in clinical samples[J]. Sensors and Actuators B, 329, 129196(2021).

    [64] Zhang D, Huang L, Liu B et al. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags[J]. Biosensors and Bioelectronics, 106, 204-211(2018).

    [65] Xiao R, Lu L C, Rong Z et al. Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing[J]. Biosensors and Bioelectronics, 168, 112524(2020).

    Zhenzhen Liu, Xiaoxian Liu, Yansong Sun, Rui Xiao. Research Progress on SERS Immunochromatographic Assay Technology Based on Novel Nanomaterials[J]. Acta Optica Sinica, 2023, 43(17): 1712003
    Download Citation